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ABSTRACT 

In this study two nonparametric probability density estimators 
are considered. The first is the kernel estimator. The problem of 
choosing the kernel scaling factor based solely on a random sample 
is addressed. An interactive mode is discussed and an algorithm 
proposed to choose the scaling factor automatically. In a Monte 
Carlo simulation study, the resulting integrated mean square error 
compares favorably with the error using the usual asymptotically 
optimal choice of the kernel scaling factor. For the latter case, 
the true sampling density is required to calculate the optimal scaling 
factor.
 

The secbnd nonparametric probability estimate uses penalty 
function techniques with the maximum likelihood criterion. A discrete 
maximum penalized likelihood estimator is proposed and is shown to 
be consistent in the mean square error. Approximation results of 
this discrete solution to the corresponding infinite-dimensional solution 
are proved. A numerical implementation technique for the discrete 
solution is discussed and examples displayed. An extensive simulation 
study compares the integrated mean square error of the discrete and 
kernel estimators. The robustness of the discrete estimator is 
demonstrated graphically. 
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I. 	 INTRODUCTION: THE PROBLEM OF PROBABILITY DENSITY ESTIMATION 

The probabilistic nature of our world is a feature which mankind has 

had to cope with throughout his existence. Only comparatively recently
 

has he attempted to cope with the uncertainty in a formal fashion. In
 

many situations it is desirable to study the underlying stochastic struc­

ture by specifying a probability density function which reflects the random
 

behavior of the data. Thus the problem of estimating a probability density
 

function from a set of data is of extreme importance.
 

Specifically, we wish to find a function f(.) which is an estimate 

for an unknown probability density function f(.) , based on a random 

sample x1 ,x2,...,x N from f(.) . The methodologies for solving this 

problem fall into two general classes, parametric and nonparametric pro­

cedures. Actually, this division in practice is not sharp. In a sense 

there is a series of steps from an assumption of a specific functional form 

of the probability density f(.) to much weaker assumptions, for example 

f E C2 with jf"(x)2dx < k . We should be aware of the fallacy of the be­

lief that any nonparametric procedure is "assumption free." 

In the following sections we examine the available methods and a new
 

nonparametric algorithm for estimating probability densities. Computer
 

examples are presented and Monte Carlo simulations summarized to evaluate
 

the performances of several algorithms. Particular attention is paid to
 

the theoretical numerical analytical and statistical properties of the new
 

algorithm. We begin by examining the philosophy of commonly used tech­

niques for the two general approaches for estimating probability density
 

functions.
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1.1 Parametric Estimation
 

For parametric estimation it is assumed that the unknown sampling
 

density takes a known functional form
 

where e is a vector of p parameters which completely specifies the
 

density function. Given such a functional representation of the density,
 

Thus the problem of
the parametric form of the sampling density is known. 


estimating the density function involves the estimation of components of
 

the vector e
 

In restricting the class of possible densities in this parametric
 

fashion, it is clear that our estimates may not be robust against an in­

correct assumption of the parametric class. For example, we might assume
 

a unimodal density while the true density is bimodal. Clearly, prior
 

knowledge of the density's explicit functional form is extremely useful.
 

There are several popular parametric estimation procedures for choosing 

statistics to estimate the unknown parameter e . Frequently, for example, 

a statistic Y is sought that is unbiased and has minimum mean square 

error subject to this constraint.
 

A Bayesian Procedure
 

Let us consider a Bayesian method for injecting prior knowledge of e
 

into the e~timation procedure. For simplicity, let e be a single param­

eter which takes on values in the interval (a,b) . We suppose that the
 

knowledge of the true value of 9 is characterized by a prior probability
 

x = Xl' ....xN)
density X(O) . The joint density of e and a random sample 


is given by
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N 
h(x,e) = IIf(x.Je)X(e) - L(eIx)X(e)
 

i=l
 

where L(eIx) is called the likelihood function. Applying Bayes Theorem,
 

we may calculate the conditional density of a given x or 	the posterior
 

density of e as
 

jL(O' )dog(9 X)g~elx)= J)xe Ox X(e )de' 

There are several possible estimates 6(x) for 9 based on 	the posterior 

to estimatedensity g(Ojx) We may use the median or mode of g(Ojx) 

the parameter e , although the mode may not be unique. Alternately, we 

may consider the estimator §(x) which minimizes the criterion function 

E[(e(x)-0) 2 ] = (e(x)-9) x(e)L(elx)ddx
 
X e
 

that value which minimizes
We may do so by assigning to o(x) for each x 


" ((x)-) 2 L(elx)x(e)de 

6(x) and setting the deriva-
Differentiating with respect to the value 


tive equal to zero implies
 

8(x) = J" eg(eix)de 

that is, 6(x) is simply the mean of the posterior density g(OIx)
 

A Maximum Likelihood Procedure 

In 1922, R.A. Fisher [1950] introduced a new criterion for choosing 

the parameter e which he called the maximum likelihood estimate. Here,
 

. motivate

O is chosen to maximize the likelihood function L(elx) We 


Suppose we restrict S to

Fisher's estimator with a Bayesian argument. 


a that is con­a finite interval (a,b) and consider a prior density for 


stant on (a,b) ,
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i if a < 8 < b
 

k(8)­

a 

x1e otherwise. 

Hence we assume that every point in (a,b) is equally likely to be the true 

value of e according to our prior knowledge. Thus the posterior density 

for 8 E (a,b) is 

g(eIx)- ex 
j3 L(G9 jx)de'
 

a
 

we see, since the denominator
If we consider the posterior mode of g(Slx) , 

does not depend on 0 after performing the integration, that maximizing 

L(ejx) * Thusg(Gix) is equivalent to maximizing the likelihood function 


the maximum likelihood estimate, according to the Bayesian interpretation, 

is the mode of the posterior density g(OJx) assuming-a uniform prior den­

sity on a.
 

Maximum likelihood estimates will not generally be unique, but under
 

certain regularity assumptions about f(.I0), Huzurbazar [1948] and Wald
 

[19491 have shown .that the maximum likelihood estimators are unique and
 

tends to infinity. The Bayesian inter­consistent as the sample size N 


pretation of the maximum likelihood estimate was rejected by Fisher. The
 

use of the maximum likelihood philosophy in the nonparametric setting has
 

been the subject of much recent work, including this thesis.
 

We summarize our discussion of parametric probability density function
 

estimates by emphasizing their importance in modelling and their relative
 

efficiency under the correct hypotheses. However, we warn that these pro­

cedures are not robust against errors in choosing the parametric family.
 



1.2 	 Nonparametric Estimation
 

In 1895 Karl Pearson [1948] proposed a systematic method for fitting
 

a probability density function based on the first four sample moments of
 

a random sample. Motivated by a limiting form of the hypergeometric dis­

which solves the differ­tribution, he proposed choosing the density f(x) 


ential equation
 

(1.2.1)
d log f(x) x - a 

dx bo + blx + h

2
 

depend on the first four sample moments and
where a, b0, b,, and b2 


The Normal, Gamma, Beta, F, and Student's t distributions
b = -a .
 

are members of the Pearsonian family of densities. Unfortunately, the
 

However, most of
differential equation has three independent parameters. 


the univariate densities mentioned above have no more than two determining
 

parameters. Thus the probability is zero that a solution to (1.2.1) will
 

be, say, a normal density.
 

For our purposes, we define a nonparametric probability density esti­

mator as one that does not result from an a priori choice of the parametric
 

form 	of a known density. The advantage of a nonparametric estimator is
 

that it can approximate a wide range of true densities, whereas we are com­

mitted under the assumption of a parametric density form.
 

Pearson's estimation procedure is, by our definition, clearly para­

metric. However, it admits of a more general class of density estimates
 

than if we assumed a priori that, say, the unknown density is Gaussian
 

with 	unknown mean and variance. Pearson's family of density estimates is
 

itself reasonably restrictive. For example, it contains no densities with
 

more than one internal mode.
 

We shall consider other nonparametric estimators beginning with the
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histogram estimator. The kernel estimator will be considered in Chapter 2.
 

The remainder of our discussion will be devoted to nonparametric estimators
 

based on the maximum likelihood criterion. A survey of nonparametric pro­

cedures may be found in Wegman [1972].
 

1.3 The Histogram
 

The histogram, the classical nonparametric probability density esti­

mator, probably antedates any parametric estimator. Given a sample
 

(Xl...,IXN] c[a,b 
N 

, we partition the interval [a,b] by
 

a - tI < t2 <... <tm+I = b and we consider all simple functions W de­

fined on [a,b] having the form
 

W(t) = yi for t E [ti,ti+I) i = l,m
 

W(b) = ym 

and zero elsewhere for some (y1 ,...,ym) E R If we let q be the
 

number of samples in the interval- [ti,ti+ ) for i = lm and let qm
 

include the samples equal to b , then the histogram estimate is the simple
 

function W defined by
 

q. 

Yi = N(ti+ 1 - tid for i = l,m . (1.3.2) 

We first show that the histogram is the unique function of the form
 

(1.3.1) which maximizes the likelihood function
 

N
 
L(W) = E W(x.) (1.3.3) 

i=l
 
I 

subject to the constraints
 

f'W(t)dt = I and W(t) > 0 t 

= 
In intervals where q, 0 , the optimal solution y. must be zero, since 

any mass placed in the ith interval decreases the likelihood.
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Following deMontricher [1973], we prove a lemma and a proposition verifying 

that (1.3.2) is the unique solution to the constrained optimization prob­

lem (1.3.3). Some of these results may also be found in the paper by
 

deMontricher, Tapia and Thompson [1975].
 

Lemma 1,3,1, Given positive integers ql,...,qm define f:R m - R by 

m qi 

f(y) = IT Yi 
i=l 

where Y = (YI'**'.ym)" Also given a E Rm Such that a> 0 , define T 

by 

=T = (y E Rm: <,y) 1 and y > 0) 

where (.,.) denotes the usual inner product in Rm . Then f has a 

unique maximizer in T which is given by y* where 

* i m
 

Yi = T and Eq,. N
 

Proof, Since T is compact and f is a continuous function of y , there 
** 

exists a global maximizer which we denote by y If yi were zero, then
 
1)
l 1 

f(y*) = 0 But y = M( ,, ) T and f(y) > 0 , which would be a con­
1 m 

T . From
tradiction. It follows that y* must be an interior point of 

the theory of Lagrange multipliers there exists X E R such that 

(1.3.4)Vf(y ) =X * 

Taking the gradient of f and using (1.3.4) leads to 

qi f (y*) =?iy i I'm . (1.3.5)i 


From (1.3.5) and the fact that <a,y > = 1 we have
 

* m .* N y* 

X= ( ,y ) E f(y )qi Nf(y
 
i=l
 

Substituting this value for X into (1.3.5) gives
 

http:YI'**'.ym
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qify* * * ) 


q~f(y*) = Nf(y )ciYi 

establishing the lemma, since we have proved that (1.3.4) has a unique
 

solution.
 

For the class of simple functions (1.3.1), the integral constraint is
 

seen to be
 

m 
E Yi(ti.l -t i) i= 

i=l
 

We may now prove the following:
 

Proposition 1.3.1. For a given partition, the histogram is the unique maxi­

mum likelihood estimator in the space of nonnegative simple functions of
 

the form (1.3.1), given by
 

1. ~m(.36 
M(136
-Yi - N(tiq,- t i)
 

i+l i
 

where q, and N are as before.
 

Proof. We have already noted that yi = Oin intervals where q, = 0, 

and formula (1.3.6) is valid in this case. Let I = fi:qi > 0] Then 

ai = ti com­applying lemma 1.3.1 over those indices in I with t+l ­

pletes the proof. 

We next show that the histogram is a consistent estimator and we cal­

culate the optimal rate of convergence for the histogram. The following
 

proof is motivated by a proof for kernel estimators by Rosenblatt [1956],
 

providing a link between histograms and kernel estimators.
 

Theorem 1.3.1,. Suppose the sampling density f(x) has continuous deriva­

tives up to order three. Suppose we define a mesh on the real line, as de­

< k < where tk+l-tk = hscribed in (1.3.23), by the set ftk ] for -w 
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for all k and for a given mesh interval h . Then the histogram W(t) 

defined as in (1.3.1) by 

qi (1.3.7) 

Yi Nh 

is consistent in mean square error in the sense that 

- 0 (1.3.8)
EIW(x) - f(x) 2 


as N -. m, h -. 0, and Nh -. . Furthermore, if h = h(N) is chosen so 

that 

1113 N-1/3 (13.9)
h(N) L 


then the optimal rate of convergence of the mean square error is
 

EIW(x) - f(x) 12 3 [f(x)fxj2/3 N-2/3 + 0(! + h3) (1.3.10) 

x , where we assumeProof Let us consider the estimate at a fixed point 


* t 
that x is always in the kth interval [tk,tk+l) as we change the mesh 

Let us further suppose that the mesh is picked so that x 'iswidth h . 

the midpoint of Etk,tk+1 ) even as we vary h . Then tk+ I - x =h and 

x - = Jh for all h , where the dependence of the mesh nodes on htk 


has been suppressed. Let
 

tk+l 

(1.3.11)
Pk = f (x)dx 

tk
 

Taking a Taylor expansion of f about x , we get 
* f, ** *2 *3 

0[(x-x) 3,
 
f(x) = f(x) + f'(x*)(x-x) + if"(x )(x-x ) + 

(1.3.12)
 

drops out in the
Using (1.3.12) in (1.3.11) and noting the linear term 


integral, we have
 



i0
 

Pk= f(x*)h + 1 f"(x*)h 3 + O(h4 ) 	 (1.3.13) 

We separate the mean square error (1.3.8) into a variance and bias term by
 

EIW(x*) - f(x*) 2 2(x*) + [E (W(x*) - f(*)]2 (1.3.14) 

Now for a given h , using (1.3.7), we have 

E(W(x ) = I Pk (1.3.15) 

and 

k 
=q
a2 (W(x*)) +12 
N2h2k 21 Ejq - Nk 

Pk(l - Pk) (1.3.16)
 

Nh2
 

where 	qk is the number of samples in [tk tk+ I) and Pk is given by 

(1.3.11). Using (1.3.13) in (1.3.16) we get 

2 = Ix** - f(x*)2h + - f"(x*)h 2 + o(h 3 

aN(2x)4j fc))h 	 x) 

N - andThus the variance of the histogram estimate will vanish as 

h - 0 if we require that Nh . . Similarly we use (1.3.13), (1.3.14), 

and (1.3.15) to calculate the 

(bi 2 = k f(x* 2 = 2 f,,(x*)2 h4 + O(h5) (1.3.18) 

24 

which vanishes as h 0 . From (1.3.17) and (1.3.18) we have 

E[W(x*) - f(x*)12 f(x + (I)1 

Nh
 

+ f,,(x*)2h4 + O(h 5 ) (1.3.19) 
24 

where we have combined all the variance terms in (1.3.17) 
except the first 

under the term 0(1/N) , since we will consider picking h of the form 

N-a where > 0. 
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Let us consider the mean square estimate of the histogram at any other
 

* 2 
point y in the interval [tk'tk+l) . Since W(y) = W(x*) and (a+b) < 

2a2 + 2b2 for any real numbers a and b , we have
 

-EIW(y) f (y)1 2 = ]EW(*) f (X*)+ f(x*) -f(y) 

f(x*)2 + -2If(x* - f(y)'12
< 2EIW(x*) ­

(1.3.20)
 

Now. usinr (1.3.12) with the worst value of y in [tk,tk+l)) namely
 

= ,baty = tk ', e have, sihce x - k h/2 

2 (1.3.21).
Ifx* )I < h 

Using (1.3.19) and (1.3.21) in (1.3.20) we obtain
 

IW(yY- f(y) 2<+~~~h 2 +o%+h ) . (..2
- *h2 1 . 

The choice of h(N) which minimizes the first two terms in (1.3.22) may
 

be obtained directly orby using Lemma 4a in Parzen [1962, p. 1074] and
 

is given by (1.3.9) with corresponding optimal mean square error (1.3.10).
 

and that we define the
Suppose we always halve h when we change h 


h/4 . With
 new mesh by shifting any interval boundary in the old mesh by 


this choice we always keep points that were midpoints of .intervals in the
 

previous mesh at midpoints of intervals in the new mesh. If we let 

denote an interval boundary and let * denote the center of an interval, 

this algorithm looks like
 

h:I .* I * 

(1.3.23)
h/2:* I * * 4 9.. j . 

h/4 * j* *J*I*I*I*1*f* 

Clearly the points denoted by the asterisks become dense on
and so on. 


the real line. This proves the theorem.
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Corollary 1.3.1i Suppose zero is an interval midpoint in (1.3.23). Then
 

under the conditions of Theorem 1.3.1 and the choice of
 

h(N) = f N 

th#optimal mean square error 

,\x2 fx__ 154 1/5 

g - f5[ 21432 N +(+ ) 

is attained at any finite number of the points x = kh for k =0,+1,±2... 
* fx2f (4. 

where x is chosen such that f"(x) f(s) is greatest. However, at 

other points in those intervals the mean square error may be as slowly de­

- 2 / 5 .creasing N

Proof Follows directly from (1.3.19), (1.3.23), and (1.3.22). 

Corollary 1.3.2. Under the conditions of Theorem 1.3.1, the histogram is 

consistent in the integrated mean square error, that is,
 

Ej' jW(x) _ f(x)12 dx - 0 

Furthermore, the choice 

h(N) = (x)2d 

implies the optimal rate of convergence
 

(x)2dx] 1/3N-2/3E Y W(x) - f(x)12 dx - 3[ j" f, 

h 3+ 0(7- + . 

Prof Follows immediately after integrating (1.3.22).
 

The Histospline
 

A procedure based on the histogram is the histospline of Boneva, Kendall,
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and Stefanov [1971]. Given an estimate of a histogram associated with a
 

data set, the authors propose fitting a spline to the histogram in a man­

ner which preserves areas in each mesh interval for the purpose of obtaining
 

an estimate of the true density smoother than the histogram. It is shown
 

that for an appropriate Hilbert space, there is a one-to-one correspondence
 

between the histogram and the histospline. The authors argue that the pres­

ence of small negative values in the tails should not prove a serious prob­

lem. However, in practical classification schemes it is necessary to com­

pare density values. No mention is made of how one might proceed if at
 

least one of these values should prove negative. Another serious problem
 

is the fact that the histospline introduces many local modes as the mesh
 

interval width decreases. Thus the practitioner is forced to use wide in­

tervals that may camouflage fine structure available in the data.
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II. KERNEL ESTIMATORS 

2.1 Description and Consistency of the Kernel Estimator
 

A fundamental theoretical advance in nonparametric density estimation
 

beyond the counting estimates of frequency tables and histograms was made
 

by Rosenblatt [1956). He considered using a central difference of the
 

sample cumulative distribution function as an estimate of the density, a
 

form that Fix and Hodges [1951) had used in a nonparametric discrimination
 

application. Rosenblatt proved that his estimate is asymptotically con­

sistent in both mean square error and integrated mean square error. Rosen­

blatt's estimate is a member of the class of nonparametric density esti­

mators that has come to be known as kernel estimators. However, it was
 

Parzen [1962J who generalized and popularized the one-dimensional kernel
 

estimator. His elegant treatment was generalized to multi-dimensional
 

densities by Cacoullos [1966], 

For p-dimensional data, a function. K(') is called a density kernel 

if the following conditions are satisfied: 

, R+K : Rp (2.1.1) 

K E L2 (Rp)
 

1
= 

p K(y)dy 


ess sup K(X) <
 

x ER p
 

lim 1k ilK(x) = 0
 

Let K/y) = K() . For a given random sample x Il' 'N, the kernel 

estimator has the simple form 

I N(2.1.2)k(y) i E Kh(y - xi ) •(.12 
N2~
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Clearly the condition that K be a density function insures that will
 

also be. We note that h is a scale parameter which reflects the spread
 

or support of Kvn Furthermore, the estimate has equal weights of I/N 

on each of the N kernels centered at the data points. That h - 0 as 

N -. w is an obvious requirement for consistency of the kernel estimator. 

From Bennett, de Figueiredo, and Thompson [1974] we have the following re­

sults concerning the consistency of the kernel estimator and the optimal
 

rate of convergence.
 

Proposition 2.1.1, Suppose x1 ,... xN is a random sample from f(.) E 

L2(Rp), h = h(N) satisfies 

lim h(N) = 0 
N-M
 

lim Nh(N)p =
 
N­

and K(-) is a density kernel defined by conditions (2.1.1). Then the 

kernel estimate f(.) defined by (2.1.2) is a consistent estimator of 

f(') in the integrated mean square error; that is, 

lim jE(f(x) - f(x) 1i = 0 
N-m 

where
 

To obtain the optimal rate of convergence for a choice of K , we
 

assume f(.) is three times Gateaux differentiable and that K is sym­

metric, i.e., K(-x) = K(x) Then for the optimal choice
 
pp I I 

h(N) = ___ p±4 N (2.1.3) 

where
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2 

and
 p p j
 
P PS ( f yiyjK(y)dy
 
i=l j=l Xiaxj
vpa
 

the optimal rate of convergence of the integrated mean square error is
 

S p 4 _4
 
21


4P~ 2 p+ p44 p+O h 4' (R24+ + CII112) yp N + +(h (2.1.4) 

For the one-dimensional case p = 1, we see that h(N) a N-I/5 and that the 

error is of order N In order to use these expressions for p = I 

an estimate of the following is required; 

f"(X)2 dx (2.1.5)
 

In practical situations, however, prior knowledge of this quantity is rare,
 

Fortunately, good estimates can be designed in an interactive mode, a pro­

cedure that is dealt with in some detail in Chapter 5 in connection with
 

the penalized maximum likelihood algorithm. The idea is to pick h as
 

small as possible without the variance of the resulting estimator becoming
 

inconsistent with our prior feelings about the true density. This is an
 

example of the bias-variance tradeoff that is well known in spectral analysis.
 

For h too large, we have very smooth estimates, hence a small variance
 

at the price of a large bias. For h too small, we may detect the fine
 

structure observable from the data, but at the price of high variance.
 

The point where the bias and variance of the estimate are both acceptable
 

has largely been a subjective decision, best resolved in an interactive
 

mode with the computer, In section 2.5 we consider a new, more objective
 

method of choosing h
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The Fburier Kernel
 

If we relax any of the assumptions on the kernel in (2.1.1), we may
 

hope to obtain significantly improved rates of convergence to zero of the
 

mean square error for the kernel estimator. Davis [1975] considers the
 

Fourier kernel 

K(x) = sinx (2.1.6)lix 

which is neither nonnegative nor in L (R) , 
1
although it is in L

2
(R) 

Suppose the characteristic function w(w) of density f(t) satisfies 

< r-Ae-P I(, (2.1.7) 

for some constants A > 0, p > 0, and 0 < r < 2 , along with one other 

technical requirement. Then cp is said to decrease exponentially with 

degree r and coefficient p The Normal and Cauchy densities are in 

this class with p = 2/2, r = 2 and p = 1,r = I , respectively. When 

(log
the kernel scaling factor h(N) is chosen of the order 

Davis shows that 

lim MSE,of the Fourier kernel = 0 (2.1.8) 
N- M.S.E. of any (2.1.1) kernel 

where M.S.E. denotes the mean square error of the estimate at some point.
 

If the characteristic function of f(t) satisfies the weaker condition
 

lim u q ojp(w)I > 0 

then the characteristic function is said to have algebraic decrease of 

order q This class includes the chi-squared and exponential densities 

with q = j(degrees of freedom) and q = 1 , respectively. The optimal 

q /2 and Davis shows (2.1.8) holds forchoice for h(N) is of order N .,
 

q > 5/2
 

In practical terms, the Fourier kernel introduces negative estimates
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as does the histospline discussed in section 1.3, resulting in the same am­

biguities. To use the optimal results, we need to have strong prior knowl­

edge about the characteristic function of the unknown density. This re­

quirement is much more stringent than, say, prior knowledge of (2.1.5).
 

The small sample properties of the Fourier kernel are not evident in the
 

above discussion. In chapter 5, we demonstrate the undesirable small sample
 

properties of this estimator.
 

2.2 	An Optimal Kernel
 

Whittle [1958] attacked the problem of finding an optimal kernel for
 

estimating the density at a point, based on prior information about the
 

density, without knowledge of Rosenblatt's work. In section 2.3 we show
 

that 	in a sense Parzen's kernel estimator is a special case of Whittle's
 

estimator when there is no prior information available.
 

Epanechnikov [1969) observed that the expression for the optimal rate
 

of convergence of the integrated mean square error (2.1.4) had two factors
 

involving the kernel:
 

3' K2(x)dx 
(2.2.1)
and 


J*x2K(x)dx
 

where we consider the one-dimensional case p = I . Following Rosenblatt 

[1971, this leads one to consider the optimization problem 

(2.2.2)
minimize jK2 (x)dx 

subject to JK(x)dx i 

K(-x) = K(x) > 0 

.fx I2K(x)dx = 

In a short variational argument the optimal kernel is calculated to be 
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3/4 5*(l - x2/5) if jxJ < VSK(X) =-(2.2.3) 
09 otherwise
 

This is a nonnegative function with finite support. Bennett, de Figueiredo,
 

and Thompson [1974] chose a B-spline for the kernel function partly because
 

of this property. Philosophically, kernels with finite support seem attrac­

tive on the grounds that the resulting density has zero mass in the tails,
 

Only when theoretical considerations have lead to a specific parametric
 

density should we feel confident about estimates in the tails outside the
 

range of the data.
 

A criticism of Epanechnikov's kernel is that it attempts to minimize
 

the bound on the error,which may not be a sharp bound. We see that this
 

kernel is minimax in flavor, trying to minimize the worst that might hap­

pen. A generalization of Epanechnikov's work may be found in Kazakos [1975].
 

We consider the problem complementary to (2.2.2) where we reverse the
 

roles of the two factors (2.2.1) involving the kernel in the optimal error
 

expression (2.1.4):
 

minimize fx
2K(x)dx
 

subject to JK(x)dx = I
 

K(-x) = K(x) > 0 

J2(x)dx = I 

It is a straightforward exercise to verify that the kernel solving this 

problem is 

K(x) (I 25 2) I1 3o (2.2.4) 

and zero elsewhere. If we scale x by a factor 5,5/3 , (2.2.4) is iden­

tical to the kernel (2.2.3) obtained in the original problem (2.2.2). It 

should be mentioned that using kernels with finite support has definite 

computational advantages. 
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2.3 An Optimally Smooth Kernel Estimate 

Whittle [1958] considered finding estimates of a density function at 

a point x in an optimal fashion using a kernel estimator. His kernel de­

noted by wx (.) depends on x . His estimate takes the form 

X
()=I 
= N(x)ESw (x.) (2.3.1) 

J=l
 

Whittle assumes that the number of observations N is a Poisson variable
 

with mean M . The kernel is chosen to minimize the expected mean square
 

error
 

A
2

= EpE f(x) - f(x)] 2 (2.3.2) 

where ES denotes expectation with respect to the random sampling, and
 

Ep denotes expectation with respect to the prior distribution of the ordi­

nates of the unknown density function.- In particular, functions [(x) and
 

[(x,y) are assumed known a priori such that
 

Ep[Mf(x)J = L(X) (2.3.3) 

EpMf(x)Mf(y)] = [(x,y) 

where M is the Poisson mean described above. Then the optimal kernel 

wx(y) minimizing (2.3.2) solves the integral equation 

p(Y)W.(Y ) + J',1(y,z)wx(z)dz = [(y,x) . (2.3.4) 

Whittle notes that wX(y) - 6(y-x) for large expected sample sizes and
 

that wx(y) is invariant to scalings of the density function. In this
 

general case for a given sample he can demonstrate neither that his esti­

mate is nonnegative nor that his estimate applied everywhere integrates
 

to one.
 

For convenience Whittle defines the normalized kernel gx(y) and
 

normalized covariance function y(x,y) by
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(2.3.5) 

y (x,Y) = x) 

so that equation (2.3.4) becomes 

§x(y) + J\(y,Z)x (z)dz = y(yx) (2.3.6) 

As a special case he considers a normalized covariance function that 

is second-order stationary, in keeping with the time series flavor of his 

approach. Whittle notes this assumption is plausible if the prior j() 

is a diffuse uniform density. Replacing y(x,y) with K(y-x) according 

to the second-order assumption, the optimal kernel x(y) must satisfy 

the integral equation
b 

§x(y) + J K(y-z)§x(z)dz = K(y-x)-. (2.3.7) 
a 

We have the following proposition:
 

bJ IK(y-x)l dxdy < 


Proposition 2.3.1. Suppose K(.) satisfies 

bb 2 
(2.3.8) 

aa 

where the interval (a,b) may be infinite. Then equation (2.3.7) has a 

unique solution §x(y) in L2 -2 ,) 

Proof. If (2.3.8) is satisfied, then the operator T(.) defined by 

T(l) = Ja K(y-z)T(z)dz is a Hilbert-Schmidt compact operator. Thus 

equation (2.3,7) may be written in the form (I+T)§ = K , an equation for 

which solutions exist and are unique. 

transform twiceAssuming (a,b) = (-wco), Whittle takes the Fourier 

in equation (2.3.7) to solve for the optimal normalized kernel as
 

Yiw(y-x)kw dwk) (2.3.9) 

x1 + k(w) 
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where k(w) is the Fourier transform of K(x) Whittle has made use of 

However, it is customary
the convolution theorem to solve for (2.3.9). 


(see Stein [1971], p. 3) to assume that both K(-) and gx(-) are in 

L(-0,=) for the Fourier transform of the c6nvolution to exist. As a par­

ticular choice of K(.), Whittle considers
 

K (x) = v(a + Oe -YIX1) (2.3.10) 

where v is the average density of observations and y, p,and y are non­

negative constants. Clearly, for a # 0, K(.) is not an L I(-=,) func­

tion. However, using (2.3.9) Whittle "solves" for the optimal normalized 

kernel with the result
 

(2.3.11)
) ex(y 

where
 

6 = (2vpy + y2).2 (2.3.12) 

does not depend on the choice of a.We note (as Whittle does) that x(y) 

a and a' should lead to the sameTherefore, solving the problem for 

solution §x(y) . Substituting §x(y) into equation (2.3.7) for the values 

a and a' and subtracting implies 

J'[K (y-z) - K , (y-z)] x(z)dz = K (y-x) - Ka(y-x) 

or 

(2.3.13)J*( V - va')§x(Z)dz = VU - va' 

We have the following: 

Theorem 2.3,1, A necessary condition for gx) to be the solution of 

the integral equation (2.3.7) with covariance kernel (2.3.10) for arbitrary 

a is that 

(2.3.14)J"gx(z)dz I1 



23
 

Proof, The proof follows immediately from (2.3.13).
 

We may take (2.3.14) as a constraint that must be satisfied by the
 

solution to (2.3.7). If a solution happened to satisfy the constraint for 

a particular choice of a, 0, and y , then clearly it would not for a 

slightly perturbed value of y or .. For the particular solution (2.3.11) 

to problem (2.3.7) with covariance kernel (2.3.10) this integral condition
 

is easily seen to be 

2v~v= 1.
 
2 a 

2 
Using the definition of 8 (2.3.12), we have immediately that y = 0 

which in turn implies a = 0 . Xhus we have shown 

Theorem 2.3,2. Equation (2.3.11) is never a solution to problem (2.3.7) 

with covariance kernel (2.3.10) for arbitrary ! . 

Proof. The solution (2.3.11) is undefined for y 0 

If we consider a = 0 , then K0(.) is an LI(-=,w) function and the 

solution given is correct, as may be-verified by direct substitution. 

Let us see how the second-order stationarity assumption allows us to
 

view Whittle's estimator as a Parzen estimator, that is, to estimate the
 

entire density with one kernel.
 

We claim that x(y) = 0 (y-x) , that is, the functions x(.) and 

x,(.) solving equation (2.3.7)for any x and x' are identical in form. 

§x(y ) (y + X'- X) 

x y x y
 

This is equivalent to saying:
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Theorem 2.3.3. The optimal normalized kernels solving (2.3.7) under assump­

tion (2.3.8) on the real line at any two points x and x' satisfy 

(y) (y + x' - x) . (2.3.15) 

Proof. Recall that gx(y) uniquely satisfies by Proposition 2.3.1 

x(y) + J"K(y-z)§x(z)dz = K(y-x) V y 

Making the change of variable y - w + x - x' which has Jacobian of unity, 

we obtain 

gx(w+x-x') + J K(w+x-x'-Z) x(Z)dz = K(w-x') . 

Transforming again z- v + x - x', we obtain 

=gx(o x-x') + j K(w-v) ,(v+x-x')dv K(w-x')-

Replacing -. y, v -. z and exchanging x and x' , we finally have 

x (y+x'-x) + J"K(y-z)%x(zx'-x)dz = K(y-x)
 

As a function of y g,(y+x'-x) solves equation (2.3.7). Since X(y)
 

was the unique solution of (2.3.7), we must have (2.3.15), verifying our
 

claim that /x(y)= %0(y-x), choosing x' = 0 

Now let us suppose that I(x) is rectangular on a very large interval 

as Whittle describes as sufficient for the second-order stationarity assump­

tion. Approximately, we suppose = 1 for all x,y . Then by (2.3.5) 

is identical with the normalized kernelthe unnormalized kernel wx(y) 

gx(y ) and Whittle's estimate becomes 

gO(x-x)()= 0 

which is the form of a Parzen estimator. For his particular choice of 

K (.) with a = 0 , the estimate is 
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N -elx-xjl
f)= e 

which can be normalized for a particular sample so that f k(x) = 1 ; the 

nonnegativity of P(x) is obvious.
 

In summary, we see that in the case of second-order stationarity of 

the prior covariance function with constant (i.e., "informationless") prior 

ordinate values, the optimal Whittle estimator takes the form of the Parzen 

estimator. The generalized Picard kernel (see Davis [1975], p. 1026) re­

sults from the particular choice of K(x) = $e "yI x I for a fixed sample. 

2.4 Unequal Weights for the Kernel Estimator 

A natural question to be answered concerning the Parzen estimator is
 

whether it can be improved. We consider allowing the estimator to place
 

unequal weights on the kernels. We choose these weights to maximize the
 

likelihood function (1.3.3). Specifically, for a choice of kernel ,(.)
 

we find the weights aI.''' N that solve the following constrained opti­

mization problem:
 
N 

maximize 11 f(x) (2.4.1) 
i=l 

where £(y) Z aYi1(Y-Xi) (2.4.2) 
i=l 

subject to ai > 0 i 1,N 

N 
Z .= 1 (2.4.3) 

i=l 1 

The first c6nstraint guarantees that ?(y) > 0 , while the second con­

straint assures us that ?(.) integrates to one. 

Following de Montricher [1973], we first establish the existence of
 

the estimator (2.4.2) solving (2.4.1).
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Proposition 2.4.1. If, T, i = l,N is a set of linearly independent prob­

ability densities on (c, ), then there exists a function W of the form
 

N
 
W(t)= zaiic(t)
 

i=1
 
N
 

which maximizes the likelihood fl W(xi ) among all functions of this form
 
N i=l
 

=
subject to the constraints E a. I and ai > 0 for i 1,N
 
i=l
 

P Let denote the value of W at x and let = (,...,Nt.
 

Therefore, by definition,
 

N
 
(2.4.4)
S =1 ii(xj 


If we define a square matrix A by its components Aji = Ti(x.) , i,j =
 

t

1,N , then equation (2.4.4) becomes = Ace , where a = (el,...
-sN)
 

This shows that P depends continuously on a ; hence, the likelihood is
 

a continuous function of o . Clearly the constraint set for a is a
 

N
 
compact set in R This proves the proposition.
 

Proposition 2.4.2. If K is a nonzero function in L2(-c,c) and [x.]
 

i = 1,N is a set of N distinct points on the real line, then the func­

tions fK(t-xi)) i = 1,N are linearly independent.
 

In view of the kernels advocated by Epanechnikov [1969] and Bennett
 

[19741, it is of interest to consider the case where K has finite support
 

and is a probability density. Although kernels are generally assumed to be
 

in L2(-c,), for kernels of finite support in LP(a,b), we have the following
 

result.
 

Proposition 2.4.3. If K is a probability density function with finite
 

support on an interval (a,b) and (x.] i = 1,N is a set of N distinct
 

points on the real line, then the functions fK(t-x )] i = 1,N are lin­

early independent.
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proof, We assume without loss of generality that xI < x2 < ... < xN and 

that (a,b) is symmetric about the origin, that is, a = -b . Suppose 
N 

4(t) = Z aiK(t-xi1
) = 0 in LP(-,w) . On the interval (xl-b,x 2 -b) we 

i=l 

see that (t)= oiK(t-x1), since this is the only term where the kernel 

I = is nonzero. This implies that 0 in order that *(t) = 0 in the
 

Yp 
 sense on the interval (xl-b,x2 -b) , which has positive Lebesgue measure
 

by assumption. Continuing this reasoning inductively, we conclude that
 

= 
ce = ... =,oN = 0 , proving the proposition.a2 

Remark For a continuous density function, the assumption that the
 

random samples Xl,...,xN are distinct holds with probability one.
 

To study the uniqueness of the weights in (2.4.2), we begin by looking
 
N
 

at the convexity properties of the likelihood IIW(xi)
 
i=l
 

N
 

Proposition 2,4.4. The functional R defined by H ,
.:R+ i 


where (I, ,Nt and 0. > 0 for i = 1,N , has at most one maxi-


N
 
mizer over any convex subset of R+
 

Proof, Suppose (p) 0 Then 

N N
 
Z log = E log i = log C
 

i=l i=l
 

Let E(O) = cp(Gcp + (l-e) ) for 8 E (0,I) . Then using the strict con­

cavity of the log, we have
 

N N 
log E(G) > e Z log i + (l-) S log Oi = log C 

iJl i=l 2 

Since the log is strictly increasing, E(8) > C for e E (0,I) . This 

proves the proposition since two distinct maximizers would lead to a con­

tradiction. 
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Proposition 2,4.5. Any two solutions to the maximum likelihood problem
 

stated in Proposition 2.4.1 coincide at the sample points [xi3 i - 1,N. 

Pof Uttlizibg the notation introduced in previous propositions, the
 

likelihood can be written as
 

J(r) = p(A(a)) 

Let T denote the constraint set for a as in proposition 2.4.1. Maxi­

mizing J subject to the constraint a E T is equivalent to maximizing 

over A(T) It follows that A(T) is convex and compact. The likeli­

hood yp is continuous; hence it has a maximizer say A(T) . More­over 


over, this solution is unique by Proposition 2.4.4. It follows that the
 

.set of all solutions to the original problem (2.4.1) is (a E TJAa 

This proves the proposition. 

De Montricher [1973] demonstrates a kernel where (2.4.1) does not have 

a unique solution. Thus the matrix A is not invertible in general. We 

answer de Montricher's question of uniqueness by making the following sto­

chastic statement which gives sufficient conditions for A to be invertible
 

for certain kernels:
 

Theorem 2,4,1. Suppose that the kernel K is nonnegative, symmetric, and 

strictly positive at the origin, that is, K(x) = K(jxj) and K(O) > 0 . 

Suppose that the sampling density is absolutely continuous. Furthermore, 

assume that for all x such that K(x) # 0, fy:K(y) = K(x)] = 0 , where 

g denotes Lebesgue measure. Then with probability one, A is invertible 

and problem (2.4.1) has a unique solution for a fixed sample size N . 
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Proof. (By induction). Let k ° = K(0) For N = 1 using the notation of 

the previous propositions, the matrix A1 = [k0], where the subscript on 

A specifically denotes N . Thus A is nonsingular since K(O) 0 0 by
 

hypothesis.
 

For N 2 

A2
 
t 
 [K (LA12) ko 

±xi9jj is nonsingular if K(A2) which occurs
 

with probability one. Now suppose after N samples AN is nonsingular.
 

We take another sample xN+l ' We inquire about the nonsingularity of
 

where Aij - . A2 k 


AN 

b]
 

bt 
I
 

where A Aji K(A = ad c = K(AN+,N+) k,b K(Ai, and = 

for i,j = I,N . Does there exist an-(N+I) x I vector v = (yt!a)t # 0 

where y is an N x I vector and 0 is a constant such that AN+Iv = 0 ? 

Suppose so; now A +IV = 0 is equivalent to the pair of equations 

ANY + b = 0 (2.4.5) 

=bty + cc 0 (2.4.6)
 

First suppose a = 0. Then ANY = 0 which in turn implies y = 0 , 

since AN is nonsingular by the induction hypothesis. But a = 0 and 

y = 0 gives v = 0 , contradicting our assumption that AN+l is singular. 

We note that if x i=x 1 , then two rows of AN+ would be identical and 

AN+ singular. 

Now for a # 0 we have from equation (2.4.5) that 

y = -AN 
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Substituting this value for y into equation (2.4.6) , cancelling an o
 

factor and noting that c = k , we obtain an equation for b 

btAlb = k 0 (2.4.7)
N 0 

Solutions of equation (2.4.7) determine the vector v and lie on a surface
 

in RN known as a "central quadric" (see Noble [1969], p. 391) since AN
 

is symmetric. Clearly b = 0 is not a solution of equation (2.4.7).
 

Since the sampling density is absolutely continuous by hypothesis and K
 

does not assume the same nonzero value on a set of positive measure, the
 

probability that xN+l results in a vector b satisfying (2.4.7) is zero.
 

Therefore, with probability one AN+ is nonsingular, proving the proposi­

tion.
 

Preliminary Numerical Results
 

We may now consider the effect of optimizing the likelihood of the
 

Parzen estimator with unequal weights. No theoretical conclusions have as
 

yet been made, so several computer simulations motivate the following.
 

Using the quartic kernel K3 given in Table 2.5.1 on several random samples
 

of size 25 from the standard Gaussian distribution, we immediately see that
 

most of the weights are set equal to zero. In fact, no more than four
 

weights were nonzero in our few trials. The kernel scaling parameter h
 

was chosen as the best value for the usual Parzen estimator. The finite
 

support characteristic of the kernel seemed to play a dominant role in the
 

resulting kernal weight estimates. Sample points outside the range of a
 

single large kernel weight near the mean required a small weight to get a
 

positive likelihood. The resulting estimate retains the character of the
 

particular kernel, but involves few kernel evaluations. Some fruitful re­

search should be possible in this area. An algorithm similar to the one
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presented in Chapter 5 was used to calculate the optimal weights. 

2.5 	A Data-Oriented Procedure for Picking the Best h(N) Value for a
 
Sample from an Unknown Density
 

For a univariate density we know from (2.1.3) that the asymptotically
 

optimal choice of h(N) for a given kernel K(y) in the Parzen estimator
 

of fo(x) is of the form
 

I-1 /5  
h(N) = a(K)5(f )N (2.5.1)
 

where
 

a(K) 	= f 2K(x)d | (2.5.2) 

L~rK(x)dx:j2 

and
 

20(f = f (X)2dx]-1/5 	 (2.5.3) 

In this section we consider a procedure based only on the samples
 

xl,.'xN for choosing a value of h(N) without any prior knowledge of
 

We first remark that equation (2.5.1) gives the asymptotic optimal 

choice for h(N) that minimizes the integrated mean square error. For
 

small sample sizes, (2.5.1) gives the choice of h(N) that is optimal
 

only on the average over all possible random samples of size N . Suppose
 

we know the true density f(x) . Then for a given sample of size N and
 

kernel K(y) , there is a value h*(N) that actually minimizes the inte­

grated mean square error
 

(y fO (y  
- @-iSi\ -xi) - fo(Y)dy 	 (2.5.4) 

This value h*(N) which we call the best choice will be close to the op­

timal value given by (2.5.1).
 

Suppose for a given sample we have a good estimate of h(N) with
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the kernel KI . call it h I We propose using (2.5.1) to get a good esti­

mate of h(N) for any other kernel K , call it h2 , by scaling hI as 

follows: 
c(K 2 ) 

h=- hI2 a(K1) h1 
(2.5.5) 

We shall present a procedure for finding a good estimate for the Normal 

kernel and then argue that an application of formula (2.5.5) will give a
 

good estimate for any other kernel satisfying (2.1.1) . In order to pre­

sent empirical evidence of (2.5.5), we introduce four kernels. The first
 

three have their support on the interval [-1,1]. 

TABLE 2.5.1 

K(.) a(K) 

K Jyj < 1 1.3510 

K 2 (y) = I - lyI jyl < 1 1.8882 

K3(Y)= _5 4 152 fri < 1 2.0362 
16y+1) ­

2
K4 (y) = n e lyl < - 0.7764 

The first two kernels are the box and triangle, respectively. The third 

kernel is a quartic polynomial with coefficients chosen so that K(y) and 

K'(y) vanish at y = + I with the usual integral constraint. In prac­

tice, K3 results in estimates virtually indistinguishable from the Gaussian 

kernel K4 . Tremendous computational advantages result from using the 

finite support of K3 and avoiding exponentials. 

Three data sets were generated. For several of the kernels given in
 

Table 2.5.1, the best choice of h(N) was computed; a line search was used
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to find that value h* minimizing a Simpson's rule approximation to the
 

integrated mean square error (2.5.4). The first data set was a sample of
 

size 10 from the standard normal density. The following table summarizes
 

the values h* obtained by minimizing (2.5.4) with kernel Ki . The
 
i
 

extrapolated estimates h. were obtained using (2.5.5):
 

TABLE 2.5.2. Sample of size 10 from N(0,1)
 

Good h. value extrapolated by (2.5.5) from 

Best hi value h* 11* h 
i1 23 

h* = 1.1561 -- 1.21 1.20
 

h* = 1.6933 1.62 -- 1.68
 
2
 

h* = 1.8117 1.74 1.83 

3 

A second data set was a sample of size 100, also from the N(0,1).
 

TABLE 2.5.3. Sample of size 100 from N(0,1)
 

Good hi value extrapolated by (2.5.5) from
 

Best hi value h* h* h*
 
2.1 2 3 

h* = 0.6890 -- 0.75 0.74
 
1 

h* = 1.0478 0.96 -- 1.04 
2
 

h* = 1.1189 1.04 1.13 

3 

The third data set of size 100 was from the bimodal mixture density
 

I N(-1.5,1) 41¥1(l.5,l) 

TABLE 2.5.4. Sample of size 100 from mixture density 

Good hi value extrapolated from
 
Best h. value h h*
 

h* = 1.0500 -- 1.09
 
3
 
h= 0.4148 0.40 -­

__4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
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Thus application of formula (2.5.5) is seen to give estimates of h*(N) 

for the other kernels with a relative error of less than 9%.
 

It may be shown that for the Parzefi estimator 2 based on the Normal 

kernal K4 , given a sample x.,... ,xN and any h > 0 

N N 
Z [h 4 - (x.)x2f "(y) 2 dy = E 

N2h9 ­j=l k=l" f y) d 


+I (xj-xk)4 ] eik (2.5.6) 

The proposed procedure is to plot (2.5.6) for a range of values of h > 0.
 

Empirical evidence suggests that (2.5.6) is nearly zero for large values
 

of h . On the other hand, as h approaches zero, (2.5.6) blows up at
 

least as fast as an exponential. Intuitively, as h decreases from a
 

large value, the increase in (2.5.6) is due to an improvement in the approx­

imation of the Parzen estimator to the true density. As h approaches zero,
 

the rapid increase in (2.5.6) results as the Parzen estimator begins to
 

resemble a linear combination of equally weighted Dirac spikes. Between
 

h for the'data lies. Finally, an application
these two extremes the best 


of (2.5.5) will give a good estimate for any other kernel.
 

Remark For the best h , (2.5.6) will generally be greater than the simi­

lar quantity associated with the true density found in (2.5.3). This dif­

ference is due to the small variations in the best Parzen estimate not 

found in the true density. 

As empirical evidence we consider six samples from a total of five 

densities. In Figure 2.5.1 the computed best h from the line search al­

gorithm is marked on the curve in each graph. The theoretical values of-

h(N)h(N)and f'f"(x)2dx are marked on the axes where applicable. We plot 
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1000.0 

FIGURE 2.5,1. Graphs of Equation (2,5.6) 
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the results on semi-log paper to accommodate the wide variation in the
 

computed values of (2.5.6).
 

In section 2.1 we discussed the interactive mode for choosing h in
 

light of the bias-variance tradeoff. Using graphs such as those in Figure
 

2.5.1, the process of decreasing h until the variance of the estimate is
 

unacceptable may be performed. On the semi-log scale we consider the curve
 

in three portions. In the first portion, the quantity (2.5.6) for the es­

timate increases in an approximately linear fashion as h decreases. In
 

the next portion of the curve, which looks like a heel, the quantity (2.5.6)
 

increases more rapidly. For h's in the heel, the fine structure of the
 

true density becomes apparent in the corresponding estimate. Finally,
 

above the heel as an h approaches zero, the quantity (2.5.6) becomes in­

finite with the Dirac spike estimate. Choosing h at the beginning of ex­

ponential part of the heel is recommended in view of the remark preceding
 

the last paragraph.
 

2.6 A Quasi-Optimal Procedure
 

We propose an algorithm based on functional iteration to calculate
 

automatically the best h for a random sample from an unknown density.
 

Let h(0 ) be an initial guess. Let 0(h) denote the quantity (2.5.3)
 

corresponding to (2.5.6) for the Parzen estimate with that choice of h
 

0(h) = C M" "(y)2 dy]-1/5 (2.6.1)
 

Using the Gaussian kernel and (2.5.1), consider
 

h ( l ) = (2JvN) 5 (h 

or in general
 

h(i+l) q(h(i)) (2.6.2)
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letting
 

-q(h(i)) = (V-N) 1/5 0(h M) (2.6.3) 

where the superscript on h denotes the current iteration number. If 

h (i+ l ) h (i )
= in (2.6.2), we define this value of h to be a solution. 

Thus we are looking for nonnegative values of h where the two functions 

cp1(h) = h(264 
(2.6.4) 

y2(h) = q(h) 

agree. For a given sample Xl,...,xN we may graph (2.6.4) for all h 

using (2.6.3) and (2.5.6) and observe where the functions intersect. To 

examine the behavior of (2.6.4), we examine (2.5.6). For large values of 

h , (2.5.6) is approximately 

N N 4 3
 
3 Z Eh =
 

Si Ni2h 9 j=l k=l 8$?-h 5
 

or
 

1/5 

_(h)3--)- . h as h-. . (2.6.5) 

As h- 0 , (2.5.6)-. ; hence, 

0(h=0) = 0 (2.6.6) 

Therefore, using (2.6.1), (2.6.3), (2.6.5) and (2.6.6), we have 

q(h=O) = 0 (2.6.7) 

and
 
/ 5 /A--N1 

q(h) %(, ) •/5 as h - (2.6.8)h 


At h = 0 the functions (2.6.4) agree. We call h = 0 the degenerate 

solution. From (2.6.8) for N > 1 we see that q (h) is approximately 

linear with slope less than one. Thus the functions (2.6.4) can agree only 

for small values of h . We call the largest value of h where the func­

tions (2.6.4) agree the quasi-optimal value of h . Clearly this value 
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FIGURE 2.6.1. 	Plots of Functions (2.6.4) vs. h 
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FIGURE 2.6.2. Plots of Functions (2.6.4) vs. h For Several Samples
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exists and is unique, although it may be degenerate.
 

In Figures 2.6.1 and 2.6.2 we graph the functions (2.6.4) for several
 

random, samples. In Figure -2.6.1 we see that several -solutions may exist 

but the quasi-optimal solution is unique. The nondegenerate solutions are
 

marked on these graphs. In Figure 2.6.2 the asymptotic behavior predicted
 

by (2.6.8) is clearly evident.
 

The functional iteration algorithm (2.6.2) is ideal for finding the
 

to anotherquasi-optimal solution without the possibility of converging 

h (0 )
solution. We simply pick large enough so that we are on the linear
 

portion of q(h) . The iterates look like: 

quasi­
optimal hh 

h 

FIGURE 2.6.3 
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Convergence is fast away from the solution. A Newton's method step may be
 

inserted alternately to speed up convergence near the solution, rejecting
 

the Newton step if it is "too big." A necessary condition for h* to be
 

quasi-optimal is lq'(h*)j < 1 ; that is, the functional iteration scheme
 

will converge to h* only if this condition is met.
 

Several Monte Carlo studies were performed using the quasi-optimal
 

algorithm. Six densities were tried (the Bimodal form is given before
 

Table 2.5.4 and the Cauchy density has scale parameter one). Twenty-five
 

random samples of size 25 and 100 were generated for each of the six densi­

ties. In all cases, h(0 ) was taken to be one. Of the 400 samples gener­

ated, 370 converged using Newton's method alone, usually in four iterations. 

The necessary condition lq'(h)f < 1 was verified. Of the remaining 30 

samples, functional iteration indicated 12 were degenerate. A solution was 

accepted as quasi-optimal if Ih-q(h) < 10 5 . In Table 2.6.1 we summarize 

the results of the Monte Carlo study. The mean, standard deviation, and 

range of the calculated (nondegenerate) quasi-optimal solutions are given 

along with the theoretically optimal value given by (2.1.3). 

For the quasi-optimal and the theoretically optimal choices of h 

the integrated mean square error was estimated for the samples generated
 

in Table 2.6.1. The calculation was performed using Simpson's rule on the
 

interval (-5,5) with mesh spacing 	of a tenth. We remark that for the 

(-2,8) . In Table 2.6.2 we summarize theF10,10 density, the interval was 


results of this exercise. The mean and standard deviation of the estimated
 

integrated mean square error for the quasi-optimal and theoretically opti­

mal choices of h are given. The efficiency is simply the ratio of the
 

In Chapter 5, with these same samples, a sensitivity
two estimated means. 


study is summarized. The integrated mean square error is calculated for
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those h's differing from the optimal h by a factor of two. The effi­

ciency for these choices of h is generally worse than the efficiency of 

th-e quasi-optimal choice. 
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TABLE 2.6.1. Monte Carlo Results for Finding the Quasi-Optimal h
 
(Each row represents 25 samples.) 

Sample 
Density Size Degenerate Mean Std. Dev. Range Theoretical 

N(O,l) 25 1 .54 .17 .20 ­ .80 .56 

Bimodal 25 2 .77 .41 .09 - 1.35 .66 

Cauchy 25 1 .65 .25 .26 - 1.09 .54 

U(-1,I) 25 1 .21 .12 .02 - .39 -­

t5 25 0 .59 .19 .25 ­ .96 .41 

F10,1 0  25 2 .25 .09 .02 - .42 .20 

N(0,1) 100 0 .35 .10 .09 - .51 .42 

Bimodal 100 0 .43 .17 .12.- .76 .50 

Cauchy 100 0 .37 .12 .16 - .62 .41 

U(-I,I) 100 4 .14 .04 .07 - .23 -­

100 0 .37 .09 .13 - .54 .31
t5 


F10,1 0 100 1 .15 .04 .05 - .20 .15
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TABLE 2.6.2. 	Integrated Mean Square Error Using the
 
Quasi-Optimal h vs. the Theoretically
 
optimal h
 

Number of Sample Quasi-Optimal h Theoretical h
 

Densit Samples Size Mean Std. Dev. ' Std. De'v Efficiency
 

.0066 .0057 .0043 .0032 65%
N(0,1) 24 25 


.0037 .0053 .0014 .0011 38%
Bimodal 22* 25 


25 25 .0056 .0031 .0048 .0023 86%
t5 


22* 25 .0172 .0120 .0157 .0106 91%
F1 0 ,1 0 

.0013 .0008 68%
N(0,1) 24* 100 .0019 .0013 


100 	 .0004 .0005 .0003 63%
Bimodal 23* 	 .0008 


25 100 .0021 .0028 .0016 .0010 76%
t5 


.0052 74%
FI0,10 24 100 .0091 .0112 .0067 


* 	The largest one or two I.M.S.E. values were omitted because the corre­

was nearly zero. The values omitted weresponding quasi-optimal h 

Bimodal 25 (.0248), F10 ,10 25 (.8049), N(0,1) 100 (.0178), and Bimodal
 

100 (.0055, .0056).
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III. NONPARAMETRIC MAXIMUM LIKELIHOOD DENSITY ESTIMATORS 

3.1 Introduction
 

Following the success of the maximum likelihood philosophy in the 

parametric density estimation case it was only natural that attempts would 

be made to employ the principle of maximum likelihood in the nonparametric 

case. Given a random sample xi,... ,xN from a density function defined 

on the set n = (a,b) , we define the likelihood that a function f E L (0) 

gave rise to the random sample as 

N 
(3.1.1)
L(f) = i f(xi ) 

i=l 

If we pick a manifold H(Q) C LI () , we may consider the following con­

strained optimization problem: 

maximize L(f) 
(3.1.2)
 

1
subject to f E H(Q) J f(t)dt = 

and f(t) > 0 VL t E Q 

Any solution to prob-The integration is with respect to Lebesgue measure. 

lem (3.1.2) is defined to be a maximum likelihood estimate based on the 

sample Xl,...,xN . As discussed in Chapter 1, unless a specific functional 

H(0) , we shall refer to all solutionsform for the density is assumed in 


of problem (3.1.2) as nonparametric. Perhaps a further distinction is re­

quired based on the dimensionality of the manifold H(Q) We shall mainly
 

infinite dimensional manifolds and approximations of suchbe considering 

manifolds. 

- The difficulty with problem (3.1.2) as stated is that a linear combi­

nation of Dirac delta functions at the sample points satisfies the con­

straints and results in a value of +w for the objective likelihood func-

Clearly, while this estimate is representative of our sample, it
tional. 
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does not reflect the true population density. Unfortunately, most infinite
 

De Montricher, Tapia,
dimensional manifolds can approximate delta functions. 


anct Thompson [1975] note that continuous functions, differentiable functions,
 

infinitely differentiable functions, and polynomials enjoy this approxima-


Thus for these choices of H(Q), the maximum likelihood es­tion property. 


timate does not exist. For finite dimensional manifolds H(Q) we may ob­

serve poor robustness, i.e., we may be unable to approximate a wide range
 

of potential "true" densities.
 

One solution to our dilemma is to pick a finite dimensional manifold
 

We have seen in Section 1.3 that the histogram
in a very judicious manner. 


H(Q) given by (1.3.1). Further­is the maximum likelihood estimate for 


more, the histogram enjoys the property of consistency. In section 2.4 we
 

considered another example of a maximum likelihood estimate based on un­

equal weights in the kernel estimator.
 

considered a maximum
Wegman, in a series of papers [1969, 1970, 1976) 


His class of admissible esti­likelihood estimate similar to the histogram. 


mators H(Q) is the simple functions. The unusual feature of his H(Q)
 

is that the mesh is determined by the samples themselves. In the earlier
 

works, the estimate was taken to be upper semi-continuous with mesh nodes
 

This estimate proved to peak dramatically at the
at each sample point. 


mode. Consequently, he was forced to assume prior knowledge of the loca­

tion of the mode, introducing a modification that avoided the problem. 
In
 

the most recent paper he observes that for a fixed number of nodes the op­

timal placement of the nodes with respect to the maximum likelihood criterion
 

is at the sample points. Clearly the estimate is zero outside the sample
 

range [xlxN] . Finally, demanding that for m intervals there be at least
 

points in the closure of each interval, he proves density consistency
k 
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as N - for appropriate rates of increase for m and k as functions 

of N . In this manner Wegman avoids the problem of peaking at the mode. 

A second solution to the problem of guaranteeing existence for prob­

lem (3.1.2) was introduced in 1971 by Good and Gaskins [1972]. The authors, 

in fact, did not prove existence of solutions. In 1973, de Montricher, et al.
 

[1975] proved both existence and uniqueness of solutions to the problem
 

posed by Good and Gaskins. In the following sections we discuss the prob­

lem and extend the results to cases of practical interest.
 

3.2 The Maximum Penalized Likelihood Estimate
 

To avoid the difficulty of delta function candidates in problem (3.1.2), 

Good and Gaskins [1972] suggested formulating a penalty functional 

G:H(O) - R+ which would evaluate the smoothness of a particular density 

estimate on an interval scale. Here by the notion of smoothness we do not 

mean f has many continuous derivatives. Rather, we wish to avoid rapid 

oscillatory behavior in the estimate. To satisfy the nonnegativity con­

straint the authors chose the sometimes dangerous trick of working with
 

. De Montricher, Tapia, and Thompson [1975], whose results we shall
 

present below, prove that working with j is not always equivalent to
 

working with f in the presence of a nonnegativity constraint.
 

We now define the @-penalized likelihood of f E H(Q) by
 

N 
t(f) = Tif(xi) exp(-4(f)) (3.2.1)

i=1
 

for a given sample x . Consider the constrained optimization 

problem 

maximize £(f) 
(3.2.2)
 

subject to f E H(Q), f f(t)dt = 1 
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and f(t) > 0 t E 

Any solution of (3.2.2) is called a maximum penalized likelihood estimate 

(M.P.L.E.).
 

The structure available with a Hilbert Space makes it a natural choice 

for H(Q) . In particular we have the notion of orthogonality available 

with the inner product. The norm induced by the inner product is 

given by if 12 = (ff> for f C 11(n). If fn - f in H(O) implies 

f (x) -- f(x) V x (E , then point evaluation is a continuous operation. 

In this case we say that H(O) is a reproducing kernel Hilbert space 

(R.K.H.S.).
 

We shall require that H(D) contain at least one feasible solution
 

f for any xl,... ,xN where xi E 0 . Then there exists f E H(O) such 

that
 

f f(t)dt = I , f(t) > 0 V t E 0 
0
 (3.2.3)

and 

f(xi) > 0 for i =l,N 

The following theorem from de Montricher [1975] gives sufficient conditions 

so that solutions to problem (3.2.2) exist and are unique. 

Theorem 3.2.1. Suppose that H(Q) is a R.K.H.S., integration over 0 is 

a continuous functional and there exists at least one f E H(Q) satisfying 

(3.2.3). Then the maximum penalized likelihood estimate exists and is 

unique. 

Proof. The constraints in (3.2.2) form a closed convex subset of
 

It may be shown that the penalized like­(f E H(Q):f(xi) > 0 , i = 1,N). 

lihood function is bounded from above. Combined with the weak compactness 

of the unit ball in H(0) the above results lead to the existence of a 

maximizer. The second Frechet derivative of the log i(f) is negative 
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definite. Hence, t(f) is strictly concave and has at most one maximizer
 

on a convex set.
 

In section 3.3 we will motivate penalty functionals j involving 

integrals of various derivatives of f squared. Thus a natural choice 

for H(o) is a Sobolev space of order s denoted by HS(a,b) . If a 

is an integer, then f E HS(a,b) if and only if f, f(l),...,f(s) E L2(a,b) 

and the norm is given by
 

if 11Sa E ai(i) 112 (3.2.4) 

H (a,b) i L (a,b) 

-
where c.i 0 and a0,as > 0 . The interval (a,b) may be infinite in
 

the above. If the interval is finite, we define f to be zero outside
 

(a,b). To apply Theorem 3.2.1, we need the following lemma:
 

Lemma 3.2.1, The Sobolev space Hs(a,b) is a R.K.H.S. if and only if
 

a > . In such a case, integration on (a,b) is a continuous linear
 

functional if and only if (a,b) is a finite interval.
 

Remark Theorem 3.2.1 and Lemma 3.2.1 imply that the M.P.L.E. correspond­

ing to H(Q) = HS(a,b) where a > and (a,b) is a finite interval is 

well defined. If we define for integer values of s and finite interval 

(a,b) 

H0(a,b) = ff E HS(a,b):f(i)(a) = f(i)(b) = 0, i = 0,s-l](3.2.5) 

we may show the M.P.L.E. is well defined for
 

Hg(ab) where ifl112 = J f~s)(t) 2 dt (3.2.6) 
a 

We note that the norm in (3.2.6) is a natural choice for the penalty func­

tional @(f) in (3.2.2). For an infinite interval, we have to consider
 

norms such as
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s2 	 )2d
=tsf(i) 

(3.2.7)lif Z T1 (t)dt.(t)f
i=0 -W 

in order to satisfy the conditions of Theorem 3.2.1. Here p(t) > c +c2t2 

for c < t < = with cc 2 > 0 Thus if we wish to consider penalty 

functionals of the form (3.2.6) on the entire real line we are apparently
 

forced into (3.2.7). In section 3.4 we show that this is not the case.
 

Remark Consistency of the M.P.L.E. on the infinite interval has not yet
 

been established. A straightforward argument by Good and Gaskins [1975]
 

shows that for any f 0 fo I the true density, E[L(fo)J > E[L(f)] holds
 

for a sample size N large enough. Unfortunately, to establish consis­

tency one must prove that a sequence of solutions to (3.2.2) for increasing
 

sample size N converges.
 

We conclude this section with a theorem [de Montricher, et al., 1975]
 

that characterizes the M.P.L.E. on a finite interval with (3.2.6) as the
 

penalty functional § .
 

Theorem 3.2.2,. The maximum penalized likelihood estimate corresponding to
 

the Hilbert space H0 (a,b) exists, is unique and is a polynomial spline
 

(monospline) of degree 2s. Moreover, if the estimate is positive in the
 

interior of an interval, then in this interval it is a polynomial spline
 

of degree 2s and continuity class 2s-2 with knots exactly at the sample
 

points.
 

3.3 	An Estimator of Good and Gaskins
 

Good and Gaskins [1972] considered the penalty functional
 

f (t)2 

§_)aJ 	 M )d (!>0 331 



51 

This form arises since they chose to work with Jf in place of f to avoid
 

the nonnegativity constraint. The penalty functional (3.3.1) is seen to
 

be equivalent to
 

(ft 42e dt (3.3.2) 
~(f~~afL dt J d 

Clearly jf E HI(- ,c) is the correct choice for H(O) . De Montricher,
 

Tapia, and Thompson [1975] proved that solutions corresponding to (3.3.1)
 

are well defined. After some analysis they also demonstrated the unique
 

solution to (3.2.2) with penalty function (3.3.1) by
 

f(t) = gXt)2
 

N v(t-xd
 
si(t) i-l (xi)
 

where
 

/ /2 c Itl -< t <c
 
v(t) 


I e -VX
-=\2Y 

and X > 0 is a Lagrange multiplier. 

We may calculate the exact solution (3.3.3) to Good's problem by simply 

calculating the N values g(xi) , i = 1,N . We have done this by picking 

the values xk for t in equation (3.3.3) and arriving at the N non­

linear equations
 

N v(xk-igN(xk) E v ) k = I,N (3.3.4) 

X i=l gX(xi) 

The Lagrange multiplier X is picked so that
 

t 2dt =
 

j f(t)dt = jg (t)2
 

This choice of X is unique. Without loss of generality, we may assume
 

X . We may calculate
that xl < x2 < ... _ N 
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16 j- gX (t)M2dttg( N I 

+~ 1 t exp( a .x) (
) (xi+xjx 

i< % (xi)g (x 

+ exp - (x.+X exp xj4 (3.3.5) 

For a given value of X ,, Newton's method was used to solve the equations
 

X = 0
(3.3.4) for gX(xk) . Since the integral (3.3.5) is infinite for 


zero for X = , and monotone decreasing inbetween, a simple line search 

was required to fi'nd X* such that the integral constraint was satisfied.
 

Two examples are given in Figures 3.3.1 and 3.3.2.
 

We may observe the effects of the finite dimensional approximation
 

to problem (3.3.2) employed by Good and Gaskins. They considered a Hermite
 

function expansion for the solution retaining no more than the first
 

fifty terms. The exponential nature of the curve is smoothed at the sample
 

points. With a penalty functional (3.3.2) involving the second derivative 

squared, solutions have a greater fullness, a property that the Hermite
 

functions seem to display. However, no exact solution is known for the
 

latter penalty functional.
 

Remark. We see that working with Jf introduces f(x) in the denominator 

of the penalty functional (3.3.1). Thus where f(x) is large, the weight 

on the penalty function is reduce&. This explains why Good and Gaskins' 

estimate tends to peak at the sample points. If we work with f itself
 

and consider penalty functionals like (3.2.6), we may avoid this undesirable 

feature.
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FIGURE 3.3.1. N 3 N(0,1) Exponential Spline Solution
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FIGURE 3.3.2 N 40 N(0,1) Exponential Spline Solution
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3.4 	Some New Results
 

Consider the maximum penalized likelihood problem (3.2.2) with penalty
 

functional 

@(f) = a Jf'(x)ds . (3.4.1) 

We choose the Sobolev space H (-W,w) for the manifold H(l) As noted 

in section 3.2, in view of Lemma 3.2.1, Theorem 3.2.1 does not guarantee
 

the 	existence of solutions to problem (3.2.2) with (3.4.1). We shall prove
 

that 	the solution actually has finite support. From Theorem 3.2.2 we have
 

that the solution is a monospline of degree 2 and that it is continuous.
 

We begin by proving a useful inequality.
 

Lemma 3.2,1, Suppose f E H1 (-w,=) satisfies the constraints of problem
 

(3.2.2). Then
 

f( 3)j2/3 Lx f(y)lyl/3LJ ft(y)2dy 1/3 	 (3.4.2) 

Proof, By the fundamental Theorem of Calculus we have
 

3/2 3/2 x [f3/2 (y)]'dy

f (x) - f (a) = d
 

a
 

3 2,fl 2(y)f,(y)dy 
a 

{i 	f(y)dy a/~jf (Y)2dyjl/
 

using the Cauchy-Schwarz inequality. Now let a - -o. We have equality 

cf I / 2 in (3.4.2) if and only if f' = . This proves the lemma. 

Theorem 3,4.1. Consider the maximum penalized likelihood problem (3.2.2) 

for f E H (-cw) and §(f) given by (3.4.1). Then we may restrict our­

selves to functions supported on a finite interval (a,b) for a given sample 

XI , ... ,x*N
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Prof We consider the properties of the maximum penalized likelihood cri­

terion function
 

N 
i(f) Z- log f(xi) - a " fI(x)2 d x (3.4.3) 

We assume 	without loss of generality that -- < x <x 2 _< N < w 

Since f 	integrates to one, we have from Lemma 3.4.1 the bound I x E 

2-c1/3 

f(x) < t)2/3 [fy2d-M ]I/3 = C (3.4.4)
f) 

Equations 	(3.4.4) and (3.4.3) imply 

JL(f) <N log C ()2 C3 

Thus as C -. w, t(f) -. -w Therefore, there exists M < such that the 

constraints of problem (3.2.2) are equivalent to 

J f(x)dx = I 

-M (3.4.5) 

M>f>0 

Similarly,
 

N 
Z log f(x.) < log f(xk) + (N-i) log M 
i=l 

for any k = I,N . So as f(xk- 0, t(f) . - Therefore, there exists 

m > 0 such that the constraints (3.4.5) are equivalent to 

ff(x)dx = 	1 

M > f > 0 	 (3.4.6)
 

f(xk) > m k I,N 

Now xI is the leftmost sample point. From Lemma 3.4.1 we have that
 

32/3 ]1/3 F 1/3 
f(x ) < (3) f(y)dy f'(Y) dy 	 (3.4.7) 

with equality if and only if
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f' = cf I / 2  tor x E (-c,x I ] 	 (3.4.8) 

Thus (3.4.8) implies the existence of a > -- and y > 0 such that
 

{(x-a)2 	for x E (a,xl]
 

(3.4.9)
f(x) = 

for x < a
 

xl1 

Notice that in (3.4.) -for all other things equal, Y f'(y)2dy iswhat we 

would like to minimize in order to maximize L(f) 

We claim that we may restrict the constraint set (3.4.6) to the inte­

gral and nonnegativity constraints, along with 

(f : Ha > -m with f given by (3.4.9) for -w < x < a)(3.4.10) 

We wish to show that there exists A such that we may restrict the con­

straint set (3.4.10) to those f such that a > i If f is given by 

(3.4.9), 	then 

I f(x)dx = (xl-a) 

Thus 

Y = 3(x1 -a)'3 x.I f(x)dx (3.4.11) 

Substituting (3.4.11) in (3.4.9) for x - xI implies 

f 3(xla)-1 1 f(x)dx 

< 3(xl-a)-	 (3.4.12) 

Thus with 	m as in (3.4.6) we have
 

m f(xl) 	: 3(xl-a) - 1 

Solving for a 

a > xI - 3/ ma. 

is fixed, we have shown we may re-Since m depends on the data and x1 


[9,w) . We may use the same
 
strict ourselves to functions supported on 


with the result
xN
argument on the rightmost sample point 


http:a)(3.4.10
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b x.+ b
 

Thus we may restrict ourselves to functions supported on the finite interval
 

[i,5] , proving our theorem.
 

Corollary 3,4,1. The maximum penalized likelihood estimate considered in
 

Theorem 3.4.1 is a monospline of degree 2.
 

Pof From (3.4.9) we see that f(a) = 0 with the similar result f(b) = 0 

following immediately. Thus we may restrict our manifold H(O) in problem 

10'

(3.2.2) to H(,b) . The corollary now follows immediately from Theorem 

3.2.2.
 

Higher Derivatives
 

We conjecture that Theorem 3.4.1 generalizes to penalty functions of
 

the form
 

= f f(S)()x(f)2 dx (3.4.13) 

where f E H(S)(-Mc) . We shall present a weaker result for the case 

s - 2 . We remark that our approach in the proof of Theorem 3.4.1 was the 

following: Suppose we are given any values of f(xk) > 0 for k = 1,N 

is fixed and we can only improveThen the likelihood portion of fQf) 


the penalty term. For any given positive area to the left of x, we see
 

a lower bound on the portion of the penalty func­from (3.4.7) that there is 


tional (3.4.1) given by 

2 
J*lf'(x) 2 dx 

This lower bound is attained only if f is the polynomial of degree 2
 

given by (3.4.9). For the case s = 2 , a polynomial of degree 4 is the
 

and f'(x 1)
solution. However, since f E H2(-,c) implies that f(xI) 
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must be matched, we find that an arbitrary area to the left of xI cannot
 

be attained.
 

Theorem 3,4.2, Consider the maximum penalized likelihood problem (3.2.2) 

with f E 112(_,o) and 4(f) given by (3.4.13) with s = 2 . Suppose 

the solution satisfies 

ff(x)dx < 2 if ff2(xl>)-l f d --4 f(x 1 ) if f'(xl) > 0 

4~ f'(x 1) 

with no conditions required if f'(x 1 ) < 0 , and similar conditions for
 

the sample xN . Then the solution is the monospline of degree 4 as in 

Theorem 3.2.1.
 

Proof, Consider
 

I(f) - 11 f"(x) 2dx (3.4.14) 

which is related to the penalty functional. We claim that for any given 

values of 

f(xI), f'(xl) and yl f(x)dx , (3.4.15) 

the optimal solution to problem (3.2.2) will minimize I(f) . This fol­

lows since we can only improve the penalty portion of 1(f) by minimizing 

I(f) 

We now show that the solution to minimizing (3.4.14) given (3.4.15)
 

is43 
x E [xoxl]

f(x a(x-x)4 + b(xx)3 

x E (--,x) (3.4.16) 

for some -w< , a < 0, b > 0 picked to satisfy (3.4.15)x ° < x I 

The second Gateaux derivative of I(f) in the feasible directions
 

, is 
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D2 (f)( ,) = 2 J.1 t"(x)j"(x)dx 

Since D2 1(f)(, ) > 0 , I(f) is strictly convex so that (3.4.16) will be 

the unique solution. The tangent cone T(f) (feasible directions) for
 

is defined by
 

E H2(-,x I ) 

0 (3.4.17)1 "f(x)dx = 

and if f(x) = 0 , then %(x) > 0 

The necessary condition that f solve our problem is that
 

(3.4.18)DI(f)(T) > 0 V 1 E T(f) 

or 

f,,(Xo) I(X ) - f",(x0 ) 1(xo) + 1 f iv)(x)(x)dx>_ 0 (3.4.19) 
x 

0 

after integrating (3.4.18) by parts twice and noting that 1(x1) = 1'(x I ) = 

0 . A fourth order polynomial satisfies (3.4.19). Since f E H , the 

constant and linear terms vanish in the polynomial. By considering various 

I E T(f) , we may show that the quadratic term vanishes, b> 0 , a < 0 

Let L = x1lX . Then 
aL5 4b 

(3.4.20)1If(x)dx = aL + bL 

Y M5 4
 

where f is given by (3.4.16). Now a,b, and x. are determined by the 

equations
 

aL4 + bL3 
(xl) = 

f'(x I ) = 4aL3 
at 
+5 3bL2 

bL4 
x5 4
 

1 f(x)dx = +
 
I W5 4 

It may be shown that if f (xl) < 0 , then any area under the polynomial 

may be satisfied. However, if f'(xl) > 0 , then 
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3 f 2 (XlJi 

f (x)dx < (
 

_4 f'(x 1 ) 

If this constraint is not active, then we may proceed as in Theorem 3.4.1,
 

proving our theorem.
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IV. 	 THE DISCRETIZED MAXIMUM PENALIZED LIKELIHOOD ESTIMATOR 

4.1 	Introduction
 

Since the infinite dimensional maximum penalized likelihood problem
 

(3.2.2) for a general penalty function based on derivatives appears
 

nontractable, we consider solving a finite dimensional problem motivated
 

by the former. We deal with the nonnegativity constraint directly, thereby
 

avoiding the unsatisfactory device of working with the square root of the
 

density estimator. As our class of estimators, we shall consider simple
 

functions and continuous piecewise linear functions with finite support
 

defined, for convenience, by a uniform mesh on the interval (a,b). Spe­

= 
cifically, we define the mesh by the nodes a ,tI ..,t M b where the 

mesh spacing h is given by (b-a)/m and tk+l - tk = h for all k 

, 	 m 


We define the kth interval to be Ik = Etk-l'tk) 

Let s(t) be a simple function defined on the mesh by 

s(t) = s(tk) V t E Ik for k = l,m (4.1.1) 

for m given values of s(tk) and zero elsewhere. Clearly, 

Mm 

Js(t)dt = 
-M 

r h 
k-l 

s(tk) (4.1.2) 

Similarly, let p(t) be a continuous piecewise linear function defined on 

the mesh by 

p(t) - P(tkl) + h-1 (t-tk-l)[p(tk) - P(tkl) ] t E I k (4.1.3) 

for m+l given values of P(tk) and zero elsewhere. For p to be con­

tinuous, we define p(tO) = p(t) 0 It is easy to show that 

m-1 

p(t)dt - Z h P(tk) (4.1.4) 
-m k=l 

If we define
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sk = s(tk) k = l,m
 

and
 

= P(tk) k = O,m 

pm 
then typically, since pO = = 0 , we have 

s3
 

2 s m-(4..5)
 

S- Sm
 

a - to tI t2 t3 t4 tim- 2 tin-1 t = b 

P3 
pl P2 Pm-1 (4.1.6) 

PO! " PM 

1 12 13 14 rn-i im
 

For the infinite dimensional problem, one criterion functional for a
 

given sample set x1,... ,xN was
 

t) N
 
tf) = Z log f(x.) (t) (4.1.7)f'(t)2 dt 


-i=l 


We approximate the differential operator by finite differences over values
 

at the mesh nodes. Similarly, we use the trapezoidal rule to approximate
 

the integral operator. Thus we consider two criterion functions to be
 

maximized that approximate (4.1.7)
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N m Fs(tk) - a(tk-l) 2 

Ls(S) = E log
i-l 

s (x ) - y E h L-
k=l 

h (4.1.8) 

and N m FP(tk) - P(tkl) 2 

Lp(p) = S-log px.) - E-h Lh (4.1.9) 
i=l k=l 

The subscript on L indicates whether simple or piecewise linear functions
 

are under consideration. We may make approximations similar to (4.1.8) and
 

(4.1.9) for higher order derivatives. To satisfy the definition of a
 

density function, we place the following pairs of constraints on the func­

tions 	s() and p(.) , respectively: 

s(tk) 0 P(tk) > 0 

s(tk ) hE P(tk ) = (4.1.10) 
k=l k=l 

With these constraints from (4.1.2) and (4.1.4), the functions will be non­

negative on the real line and integrate to one.
 

We consider the problem of maximizing (4.1.8) or (4.1.9) for functions
 

given by (4.1.1) or (4.1.3) under the constraints (4.1.10). We call solu­

tions to these constrained optimization problems discretized maximum penal­

ized likelihood estimates. In the next sections we consider the following:
 

the existence and uniqueness of the discretized maximum penalized likelihood
 

estimate, its consistency properties, and the sense in which the estimates
 

approximate solutions to the corresponding infinite dimensional problem.
 

4.2 	Existence and Uniqueness
 

Although we shall seldom retain more than one or two terms in the
 

penalty functional,we may consider including r terms involving approxi­
th 

mations of all derivatives up to the r order. Following our discus­

sion in Section 3.1, pick a mesh a = t0 ,tl,.. .,tm = b such that 

tk+l - tk = h . For convenience, extend this mesh to the entire real line. 
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Let p(t) defined by (4.1.3) denote a continuous piecewise linear function
 

that is identically zero outside the finite interval (a,b). Clearly, p(.)
 

is determined by the m-i values P(tk) for k - l,m-l, since we define 

P(t0 ) - P(tm) = 0 for continuity. Consider the following constrained op­

timization problem for some fixed nonnegative weights cj : 

r m+j-l j(t]
N 

maximize Lp(p) = E log p(x) - CY. h - (

p i=l j=l kl h 

subject to 

P(tk ) > 0 k 1, m-I (4.2.2) 

m-1
 
Z p(tk
 
k=l
 

where 

viP(tk) = (i-B)iP(tk) 

where 1 and B are index shifting operators such that 

lp(tk) = P(tk) 

and 

Bp(tk) = P(tk. I ) 

For example, (l-B) 2 P(tk) = P(tk) - 2p(tk-l) + P(tk 2) , which would be the 

discrete approximation to h times the second derivative. Again, the
 

constraints (4.2.2) guarantee that p(.) will be nonnegative and integrate
 

to one. Although the following are really corollaries to Proposition 3.2.1,
 

we give below a simple finite dimensional proof not possible for use in
 

the more general infinite dimensional case.
 

Theorem 4,2., Suppose we are given a sample x,...,XN, each contained
 

in the finite interval (a,b) partitioned in an equally spaced mesh t0 ,..., tm
 

Consider the problem of maximizing (4.2.1) over all continuous piecewise
 

linear functions given by (4.1.3) under the constraints (4.2.2). Then solu­

tions to this problem exist and are unique.
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P The constraint set (4.2.2) is clearly a convex and compact set in
 

-
Rm . Since Lp(.) is a continuous functional in the values P(tk)
pk 

we have existence of a global maximizer.
 

To prove uniqueness, we suppose that we have two continuous piecewise
 

linear functions p1 and P2 such that Lp(pl) = Lp(p 2 ) . Consider the 

continuous piecewise linear function defined by
 

p(t) = pl(t) + p2 (t) * (4.2.3) 

This function is admissible since it satisfies the constraints (4.2.2).
 

Since the log is a strictly concave function, we have
 

N N N
 
Z log P(XiJ> Z log Pl(xi) + E log p (Xi) (4.2.4)


1li=l ii i=l 2 i 

Also we have by linearity that 

&P(tk) = Pl(tk) 
i )  (4.2.5)1 + kvJP2(t 

For any two real numbers a and b
 

2 2 2(a + b) < 2a + 2b (4.2.6) 

Combining (4.2.5) and (4.2.6) and summing implies 

S[&VP(tk)]2 E[vJPl(tk)] 2 + ETVJP2 (tk)] . (4.2.7) 
k k k 

After multiplying (4.2.7) by ayih 1- and summing over j together with
 

(4.2.4), we have
 

Lp(p) > L(Pl) + L(P2 L(pl)
 

Thus the existence of two distinct global maximizers would lead to a con­

tradiction.
 

Theorem 4.2.2. Under the conditions of Theorem 4.2.1, consider the problem
 
of maximizing L (.) corresponding to (4.2.1) over all simple functions
 

given by (4.1.1) under the constraints (4.1.10). Then solutions to this
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problem exist and are unique.
 

Proof, The constraint region (4.1.10) is convex and compact. The objec­

tive functional Ls(.) is a continuous function of the values s(tk)
 

This proves existence of solutions. The uniqueness follows exactly as in
 

Theorem 4.2.1.
 

4.3 	Consistency of the Discretized Maximum Penalized Likelihood Estimator
 

In this section we prove that the simple function maximum penalized
 

likelihood estimator is consistent in mean square error. For large sample
 

sizes, this estimator looks very much like the histogram. In later section
 

we consider how the continuous piecewise linear function and the simple fun,
 

tion 	are "close" for the same data.
 

Consider the simple function s(.) discussed in Section 4.1. Again, 

for convenience, we define sk = S(tk) for k = l,m . Extending the mesh 

over the entire real line, we have s_ l = Sm+3 = 0 , for example. For a 

given sample xl ... , let 

*0 = # samples in (-c,a)
 

= # samples in Ik = [tk-l,tk) k = l,m (4.3.1)
*k 


Vm+l = # samples in [b,w)
 

m+l
 

Then ZS k = N and we define
 
k=0
 

m
 
n = E Vk(4.3.2)
 

k=l
 

We consider truncating our data outside the interval [a,b) This will
 

introduce a slight bias into the solution. Then using (4.3.1), our ob­

jective functional with the first derivative penalty functional becomes
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m is 2 
maximize Ls(S) = Sd log k - ( .k,. (4.3.3) 

k=l k=O 

subject to s k > 0 k =l,m (4.3.4) 

m 1 

k=l
 

We may now prove consistency of solutions to (4.3.3).
 

Theorem 4,3,1, Let Xl,.°ex*N be a random sample from a continuous density 

f 0 Then the simple discretized maximum penalized likelihood estimator0 

solving (4.3.3) is asymptotically consistent in the mean square error in 

the following sense: if we pick h = h(N) so that as N - = and h(N) -. 0 

we have Nh(N) - M , then we may make the mean square error arbitrarily 

small by taking the interval (a,b) sufficiently large. 

Proof. The constraint > 0 is not active for those k where Vk > 0sk 

since s* = 0 with Vk > 0 implies that Ls(s*) = -. o However, for the 

feasible choice 

Vk
 
S = 9k k =n- l,m 

we may calculate 

- \ 1Vk VkkoLs ( ) = 

nhkk 

> -n' log n'h'- h> > -


Ignoring the inequality constraint, we have from the theory of Lagrange 

multipliers that there exists X E R sdch that 
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S - = 0 i = Im (4.3.5) 

i bi [k=ls 

For our problem, equation (4.3.5) becomes 

V1 + 
2a V2S+ 0 = ,

=i ja 72 + X 0 1 = Im (4.3.6) 

where
 

2 S - 2s i + (4.3.7) 

Multiply (4.3.6) by si and sum over i l,m Using (4.3.2) and the 

second constraint in (4.3.4), we may solve for the lagrange multiplier as 

m 2 
Xn'h - 20 F siVsi+1 

i-i1 

Substituting this value in (4.3.6), our necessary conditions become, after
 

dividing by N 

Ns 2' N- S sJ+ = 0 (4.3.8)
 

Before solving for si , let us bound-the second and fourth terms in 

(4.3.8). From the constraints (4.3.4) we see that
 

1 

_ i 1,m . (4.3.9) 

Using (4.3.9) and the definition in (4.3.7), we arrive at the following
 

nonstochastic bounds: 

-2 2 1 
-<Vs < i ,m (4.3.10)
 

Since s(t) is zero outside (a,b) , we have
 

> s +2I = Z - 2s. ji
 
j=l j=l i s+1
 

m 2 
= E 2s s - 2s jJ=l j j+l 

m
=-s1 . s- rn(Sj+I - s.)2 (4.3.11) 
rn-J=l ~~ 
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Using (4.3.11), we arrive at the bounds
 

m22s .j s .. 1 0 (4 .3 .12)
h 

Using the bounds (4.3.10) and (4.3.12) in equation (4.3.8), the'necessary 

conditions become 

Vi - nT h o (4.3.13) 

Ns Nh - N h2 

Suppose f0 is the true sampling density. We define 

b 
= 1 - ff (x)dx (4.3.14) 

a
and
 

P= fo(x)dx for k = l,m (4.3.15)
 

-k 

Now as N -. keeping h fixed
 

VkN- Pk in quadratic mean 

(4.3.16)
 

and 

-. I - £ in quadratic mean (4.3.17) 

since the variances of the quantities in (4.3.16) and (4.3.17) vanish as 

N -. = Thus as N . = keeping h fixed, we have from (4.3.13)-(4.3.17) 

si -h in quadratic mean . (4.3.18)
 

Since f is continuous, we have that as h -. 0
 
0 

Pi
 
T fo(xi) (4.3.19) 

where x. is the point in I. as h -. 0 . Therefore, if we demand as 

N -. w and h - 0 that Nh - m , we see from (4.3.13), (4.3.18), and 

(4.3.19)
 

http:4.3.13)-(4.3.17
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f (xi) 
s - 0-1 in quadratic mean . (4.3.20) 

Thus the mean square error of the discretized maximum penalized likelihood
 

estimate at a point x i is seen to be 

m~s.e. - f o(xi)2 r--) (4.3.21) 

By picking the interval (a,b) arbitrarily large, we may choose e arbi­

trarily small in (4.3.21). This proves our theorem.
 

Consider generalizing the objective functional (4.3.3) to include the
 

rth derivative in the penalty term. Using the notation of equation (4.2.1)
 

our problem becomes
 
mr
 

maximize L (s) = v log sk V (4.3.22)
k=l h k 

subject to the constraints (4.3.4). The analogous result to Theorem 4.3.1 

is 

Theorem 4,3,2. The simple discretized maximum likelihood estimator solving
 

(4.3.22) is consistent in the sense given in Theorem 4.3.1 if we pick h(N)
 

2r
 
so that as N-. and-h(N) 0 , we have Nh(N) 2 r 

Proof, The proof is parallel to that of Theorem 4.3.1. 

The Truncated Density
 

The effect of throwing away data points outside the interval (a,b)
 

when solving problem (4.3.3) is that we are really estimating the density
 

(4.3.23)
g(x) x 


otherwise
 

where we call g(x) the truncated density and e is defined in (4.3.14).
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Nonparametric estimates in the tails are generally unacceptable as we 

discussed in section 2.2. However, in situations where nonparametric 

density estimation is appropriate, faithful representation of the unknown 

density near the modes and in area of high density is the issue. This is 

the goal of the discretized maximum penalized likelihood estimator. 

Corollary 4,3,1, Under the conditions of Theorem 4.3.1 for a fixed inter­

val (a,b) , the discretized maximum penalized likelihood estimate is con­

sistent with the truncated density (4.3.23).
 

roof, Follows immediately from the proof of Theorem 4.3.1 and equation
 

(4.3.20).
 

If we assume that the samplirg density is absolutely continuous, we
 

have the following consistency result:
 

Theorem 4,3,3, Suppose the samplixg density f (x) is absolutely con­
0 

tinuous. Let g(x) denote the truncated density (4.3.23) for some inter­

val (-A,A) Then the simple discrete penalized estimator sN(x) (where 

N denotes the sample) is consistent on (-A,A) in the integrated mean 

square error; that is,
 

=lim <AEIsN(x) - g(x) 2dx 0 

where sN solves (4.3.22). 

P Consider the finite interval (-A,A) ; divide it into m intervals 

of equal lengths h > 0 ; that is 

2A 
h 

IU I2U ... Uim = (-A,A) 
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Let xk be a fixed point in Ik for k = l,m . From Corollary 4.3.1, we 

have that sN(xk) converges in mean square to g(xk ) Therefore, given 

e > 0 , there exists h > 0 sufficiently small and n < - such that 
xk 

2EISN(xk) - g(x k ) 1 < e V N > nxk for k = l,m (4.3.24) 

Nh2 rwhere N is also picked large enough so that - M and h -. 0 

Since there are a finite number of intervals m , we define
 

=n* max n < 
s l<k<m Xk 

Thus (4.3.24) holds for all k
 

For a given- h consider
 

= max sup jg(x) - g(y)j (4.3.25) 
l<k x,yEIk
 

Now f and hence g are absolutely continuous on (-A,A) Therefore,
 
0
 

by absolute continuity
 

(4.3.26)
lim 6 = 0 
h O 

Consider the mean square error at an arbitrary point Y E Ik . We 

have since s = SN(xk) 

- g(y) 12 = EIsN(xk) _ g(y)12 
ElSN(Y ) 

< ElSN(X k ) - g(xk)I 2 + Ig(xk) - g(y)j 2 

2n* 
 (4.3.27)
 

under the coiditions (4.3.24) using the triangle inequality and (4.3.25).
 

Since (4.3.27) holds for any y we have
 

S - g(y) dy < 2(s + Sh)A (4.3.28) 

IxI<A
 

Now e is arbitrarily small, 22 0 by (4.3.26), and A is fixed. This 

proves the theorem. 
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4.4 Approximation Results 

Theorem 4,4,1. Suppose (a,b) is a finite interval and Xl,...,xN a 

fixed sample of size N . For the penalty functional 
b 

= a(f) f'(t) 2 dtI 
a 

we consider the discrete and infinite dimensional maximum penalized like­

lihood problems, truncating data if necessary. Then the simple function
 

solution approaches the H (a,b) monospline in L (a,b) as h - 0 

Po We denote the simple function solution by sh(') to emphasize the
 

mesh spacing. Let Sh(.) be defined as in (4.4.1) and (4.4.5). For con­

venience let sh(tl) = Sh(tm) = 0 (see 4.4.10). The two criterion func­

tions are 
N ht~)2 

hh(sh) h log Sh(Xi)Z log 
- Sk 1[ht k ) (t

h -
2 (4.4.1) 

and 
N b 

L (f) = 2 log f(xi) - fJ f'(t)2 dt (4.4.2) 
i=l a 

Step 1. Let f* denote the solution to the continuous problem (4.4.2).
 

By Theorem 3.2.2 we know f* exists uniquely and is a monospline of de­

gree two. Let s* be the unique solution to the discrete problem (4.4.1)

h
 

for a given h
 

Claim We can find sf*,h a simple function approximation to f* that
 

satisfies the discrete problem constraints such that
 

(4.4.3)

L(sf,hLf(f*) 

in the sup norm as h - 0 . 

Proof of Claim,. We construct sf*,h and demonstrate the desired proper­

ties. Let
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sf.h(tk) = f'f*(t)dt k = l,m (4.4.4) 

Then sf*,h is nonnegative and integrates to one. Since f* is a mono­

spline of degree two, f* is infinitely differentiable except perhaps at the
 

and at two points between adjacent samples and at one
sample points xi 


point between an interval endpoint and the extreme sample. Thus there are nc 

more than 3N points of derivative discontinuities in all. For h small 

enough, no interval Ik will contain more than one such point of disconti­

nuity. Where they exist, all derivatives of f*- are bounded. 

For X E Ik and some a E Ik 

sf*,h(x) = f*(a) (4.4.5) 

Since 
x
 

f*(x) - f*(a) = f*'(y)dy
 
a 

(4.4.5) and the Candy-Schwartz inequality imply
 
2 x 
 2 x
 

jf*(x) - f(a)12 J f*'(y)2dy.-J dy
 
a a 

or 

' If*(x) - Sf*h(X) 1A< fIf* (y)2dy ] . (4.4.6) 

Therefore, sf. (x ) . f*(x) in the sup norm as h . 0 so that the log 

likelihood terms in (4.4.1) and (4.4.2) agree as h - 0 . We now consider 

the penalty terms. Let Sk,h = sf*,h(tk) , k = l,m Then using the Mean 

Value Theorem 

IV 2 = E f*(t)dt . f*(t)dt 2 

h (sk,h " Sk-l,h = h khhlk h Il 

= g - f*(:k-2 (4.4.7) 

where xk is a point in Ik. Letting Xk denote the midpoint of I k 
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we can take a Taylor expansion and calculate (4.4.7) to be
 

Sk(f*('k) - f *(k) + dkakh - dk- lk-lh)2h k
 

whr k =dt 	 khwhere dk rd f*(t) evaluated at some point in Ik and xk ^ =C
 

for Ik 1 < . Squaring in the above we obtain
 

k(f*(k) - f*k_1)) 2 + - E h 2 (dkook - dk - ) 2 

kk dah klak) 

2 Ef. Gk) )][h(dkk - dklofk-i (4.4.8)-f*(% 


Ignoring the finite number of points where f*' is discontinuous, f*i'k) ­

k-i and d -d are O(h) . The summing process in 0(m) = 0(1
 

so that the second term is i [0(h)]2 = 0(h) Likewise the third term is
 

h h
 

term in (4.4.8) approximates J f*'(t)2dt as h -. 0 . Using the Fundamental 

Theorem of Calculus, we have that the difference of the first term in 

(4.4.8) and the continuous penalty term is
 

k )I 	k(f*. - f* k-i ) ) 2 j" f*'(t)2dt
 

kk
 

I EE Jk f*'(t)dt]2 _ jk f*'(t)2dt
h kxlkkk 	Xk I 	 k x k I 

* ' h [f*'(%k) xk- -7E f 

k k 

in 1(k-_]2 k-1] (T'k)22 (xk-3k-1) 

= 	r h[f*'(gk)2 - f*2(k )2 (4.4.9)
k 

since XkXki h where and E Ik . Now the term in brackets in 

(4.4.9) is 

[f*'(9k) -	f*(1k)]f*'(§k) 

+ f*'(Tlk) ]
 

The first factor is 0(h) and the second term-is bounded. Since the suming
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process is 0(%) , (4.4.9) is 0(7)hO(h) - 0 as h - 0 . In the finite 

number of intervals containing the derivative discontinuities, the contri­

butions to the sum are less than 3N[O(h)] - 0 , so that we could ignore 

those intervals in the above arguments. This proves the claim. 
4 

Step 2. Recall that s* is the unique maximizer of (4.4.1). We have
 
h 

that Lh(sh) h(sf*,h) > -w since Lf(sf*,h) Lf(f*) > - Therefore 

sup Ist(tk) - st(tk) I 0 (4.4.10) 
h-0 

since otherwise the penalty term would tend to - We use (4.4.10) to
 

SHI function'. Given s* we define a continuous 

approximation ft to s* in the following way: let f* be the piecewise 

linear function connecting the simple function 8* at the midpoints of 

the intervals. With this choice, ft is nonnegative and integrates to one. 

If we consider the derivative approximation from the midpoint of Ik I to 

it is df2/h for the simple function, where d = st(tk) - S*(tk_) 

and for the piecewise linear function
 

E dt)t (h)2dt=h 

Therefore, by construction we have 

"f(t) 2dt = 1 - s*(t 2s(t (4.4.11) 

so that the penalty terms agree for any h . From (4.4.10) we see that
 

f* converges to s* pointwise in the sup norm by the construction of
 
h h 

f* . Combining this fact with (4.4.11), we have 

lLI(s*) - Lf(ft)11 0 as h - 0 . (4.4.12) 

Since both f* and s* are density functions, we have Ph - s~tII I< 2 
h h L 
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This bound, (4.4.12) and Holder's inequality imply
 

Ilf - shIIL 2 - 0 as h- 0 . (4.4.13)
 

Step 3. By their respective optimality properties
 

Lf(fh*)< Lf(f*)
 

and (4.4.14)
 

_f*,h)
(s 

Combining 	(4.4.14) and (4.4.12), we have
 

1h ~-f*,h): Lh.sh) h10 Lf(ft) 5 Lf(f*) 	 (4.4.15)
 

But since L(sf*,h) - Lf(f*) in the ,0-norm as h -. 0 by (4.4.3), we
 

have from (4.4.15)
 

Lf(f) - Lf(f*) as h- 0 (4.4.16)
 

1
 
By the uniform strict concavity of Lf(.) with respect to the H norm 

we have from (4.4.16) 

ijft - f*f I- 0 as h- 0 . (4.4.17) 

L2Now H convergence implies convergence. Both f* and s* are in 
fh 	 hi
 

L 	. Therefore, the triangle inequality using (4.4.13) and (4.4.17) implies 

Hs* - f*Ii - 0 as h - 0 

This proves the theorem.
 

Theorem 4.4.2. Under the same conditions as Theorem 4.4.1, the continuous
 

piecewise linear solution approaches the H0(a,h) monospline in H as
 

h-.0. 

Proof. We 	replace equation (4.4.1) with
 

N2
 

h(ph) = Z 	log Ph(xi) - 1h [Ph(tk) - Ph(tk-l)] (4.4.18)i=lk 
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where ph is a continuous piecewise linear function defined on the mesh
 

of interval width h
 

Step 1. We can find Pf*,h a continuous piecewise linear function approxi­

mation to f* that satisfies the discrete problem constraints such that 

/(pf*,h) - Lf(f*) (4.4.19)
 

in the sup norm as h - 0 . Consider the function f* which approximated

2h 

S* in 	step 2 of the proof of Theorem 4.4.1. f* has mesh nodes exactly2h 
 2h
 

at tk since it has its nodes at the midpoints of the mesh with interval
 

width 2h . If we let Pf*h = fh , then by (4.4.17) Pf*,h is H!
 

convergent to f* and (4.4.19) is seen to hold by construction.
 

Step 2. Let p* denote the maximizer of (4.4.18). We have Ljpt) > 

(pf,,h) > -w since 5(pf*,h) Lf(f*) > - . Thus (4.4.10) holds 

for p p E H0(ab) h -.0 .and 0 as Therefore, 

ll1(p*) 	- Lf(p)Iil -0 ash- 0 (4.4.20) 

Step 3. By their respective optimality properties and (4.4.20)
 

) --Lh(p*) hO.Lf(p < Lf(f*) (4.4.21)
 

Using the strict concavity of Lf(.) , (4.4.19), and the triangle inequality
 

we may show exactly as in Theorem 4.4.1
 

llp - f*II -H 0 as h-. 0 

proving 	the theorem.
 

Plausible Theorem 4,4.3. Under the same conditions as Theorem 4.4.1 with
 

the penalty functional
 

b
 
(f) 	= a J'f"(t)2 dt
 

a
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the continuous piecewise linear solution approaches the 2(a,b) monospline
 

HI
in as h 0
 

-Remark. The HI convergence is the best possible since the discrete solu­

tion is not in 2
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V. NUMERICAL IMPLEMENTATION AND SIMULATION RESULTS 

5.1 The Numerical Algorithm
 

In presenting the numerical solution for the discrete maximum like­

lihood penalized problem, we choose the continuous piecewise linear solu­

tion rather than the simple function solution for its smoothness and approx­

imation properties. We consider the penalty functional based on second
 

differences which may be generalized to an arbitrary derivative approxima­

tion.
 

Let t1,...,t m be a given fixed mesh with mesh interval h = tk+l-tk 

for k = l,m-l. The continuous piecewise linear solution is defined as 

p(t) and is determined by the values at the nodes which we denote 

Pk = P(tk) k = l,m 

where (5.1.1) 

P1 ' P2 = Pm-l Pm - 0 

for convenience. The solution may be evaluated at a point t by
 

Cl + Pk+l "-P 

jk+ h (t - tk) t E [tk,tk+l) 

p(t) = (5.1.2)V t e (t 2 ,tmI ) 

Let xi,...,XN, be a random sample. We truncate those points not falling 

in the interval (t2 ,tml) and label the remaining points x1 ,... ,XN 

To evaluate p(.) at xi , we introduce the star indexing function 

*:I -. I defined by 

x E [t*(i),t*(i)+l) i = IN (5.1.3) 

Thus the star function points to the interval in which xi falls. Our 

criterion function (4.1.9) may be written as 
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A E(kkl - 2Pk + Pk+l ) 2 

-
minimize 

h 3 k=2 

N -"*(i)+i 
-E logp*(i) + h (x i - t*.))J (5.1.4)
i=l
 

subject to
 

Pk > 0 k = 3,m-2
 

(5.1.5)
m-2 1 


k_3 k =h
 

We may deal with the nonnegativity constraint in (5.1.5) directly by the
 

substitution
 

2

Wk = pk 	 k = ,m (5.1.6) 

and solving for W3,..,m_2 From the theory of Lagrange multipliers 

there exists X E R such that 

- tkxI 


4*(i)k37k+l 2 - ' ( 

*(i)k + (x - tk) 

xi - tk I 

h 	 - 2 (5.1.7)-	 2 2 
02 wk- k- I
 

*(i)=k-I WklI + h (xi - tk-l)
 

is identically zero for k = 3,...,m-2 at the solution of problem (5.1.4)
 

where
 
4 

V4Pk+2 - Pk+2 - 4 pk+l + 6pk - 4 pk-I + Pk-2 

Equations 	(5.1.7) along with the integral constraint 

I m-2 21 - F wk 	 =0(..8 
k=3
 

determine m - 3 nonlinear equations in the m - 3 unknowns X'tw 3 ,'.'''m-2"
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Given initial (nonzero) estimates for the parameters, Newton's method is
 

used to find the zeroes of the equations (5.1.7) and (5.1.8). This algorithm
 

involves calculating the (m-3)x(m-3) symmetric Jacobian matrix and solving 

the resulting linear system for the changes Awk and A? in the estimates 

of the last iteration. Iteration is stopped when
 

2 m-210-5 (5.1.9) 

k=3
 

Then p(t) is determined by (5.1.6) and (5\1.2). 

We emphasize that the number of mesh nodes m determines the amount
 

of work necessary in the numerical solution of the discretized maximum
 

penalized likelihood estimate (D.M.P.L.E.). The sample size N is impor­

tant in calculating the Jacobian matrix, but only in a linear fashion.
 

Thus the major effort of solving the (m-3)x(m-3) linear system does not
 

depend on the sample size.
 

5.2 The Choice of the Mesh Spacing h 

Suppose we have a good value of the penalty weighting parameter a 

For a fixed sample x1 ,... ,xN we choose the mesh nodes t 2 and ti 1 . 

Recall the estimate is zero outside the interval (t2 ,tm_1 ) by (5.1.1). 

We consider the resulting continuous piecewise linear discretized maximum 

penalized estimate as a function of the mesh interval width h . The choice 

of h is important since the amount of work required by the algorithm is 

approximately proportional to (m-3)3 . However, we wish to pick h suf­

ficiently small to reveal the fine structure in the estimate.
 

To illustrate the practical aspects of the preceding discussion, we
 

consider a numerical example. A random sample of size 100 was generated
 

from the N(0,1) density. The choice a = 10 is good, as we demonstrate
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in our simulation study in section 5.5. The interval of support (t 2 ,tm-1 ) 

was taken to be (-4,4). In Diagrams 5.2.1-5.2.4 we graph the N(0,1) den­

sity (* on graph) with the discretized maximum penalized likelihood solution
 

(0 on graph) for the choices h = 2.0, 1.0, 0.5 and 0.25 with corresponding
 

values m = 7, 11, 19 and 35. The stability of the estimates is apparent. 

For this sample of size 100, choosing a smaller h does not appear to be
 

warranted.
 

We remark that as h decreases, the size of our problem increaaes.
 

In general, better initial guesses are required in Newton's method for
 

larger problems than for smaller problems. If convergence problems are 

encountered as the result of poor initial guesses (obtained from a histo­

gram or kernel estimate), we bootstrap the algorithm to provide good initial
 

estimates. First a large mesh interval is chosen so that the problem is
 

small and Newton's method converges quickly. This coarse estimate is then
 

used to provide initial guesses for a finer mesh, say, twice as many nodes. 

We continue refining the mesh until h is as small as desired. Since 

this procedure provides excellent initial guesses, only a few iterations 

should be required for (5.1.9) to be satisfied.
 

A numerical study indicates that the D.M.P.L.E. is stable for fixed N
 

as h -. 0 . We have seen that this limit is precisely the monospline esti­

mator of de Montricher, Tapia, and Thompson [1975]. It appears that among 

our sufficient conditions for consistency [(i) a'> 0, (2) N -. 0, (3) urm h rN 
22r N-." 

, (4) lim h = 0] the condition lim h2rN = is an artifact of our proof. 
N- N-c
 

At this point it would seem that necessary and sufficient conditions for con­

sistency of the D.M.P.L.E. are simply 1, 2, and 4. Since for fixed N the 

D.M.P.L.E. solutions converge to the infinite dimensional M.P.L. solution as 

h -. 0, it appears that necessary and sufficient conditions for consistency 

for the M.P.L.E. are one and two above. 
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DIAGRAM 5.2.1. N 100 N(0,1) DJ4*PL.E. a10 h =2.0 
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DIAGRAM 5.2.4. N = 100 N(0,1) D.M.P.L.E. = 10 h = 0.25 
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5.3 The Choice of
 

We next consider the choice of a . This problem is more important 

and more difficult than the selection of the mesh spacing h . Philosophi­

cally there is a correspondence between a and the Parzen kernel scaling
 

parameter h(N) . As we discussed in Chapter 2, h(N) too large results
 

in a disperse estimate while h(N) too small results in a highly varying 

estimate. The a parameter has the same effect for the piecewise linear
 

estimate. To pick an appropriate a several values should be examined,
 

picking a as small as possible without incurring a large variance in the
 

corresponding estimate. This interactive mode is useful in practice. We
 

hope to automate this choice of 0 in a manner similar to the quasi-optimal
 

procedure for kernel estimates discussed in section 2.6.
 

To demonstrate graphically the discussion in the previous paragraph,
 

a random sample of size 300 was generated from the bimodal mixture density
 

3/4 N(-1.5,1) + 1/4 N(l.5, 1/9) The interval 2 ,tmI was taken as
(t 1 ) 


= (-5, 2.6) with mesh spacing h = 0.2 and m 41. In Diagrams 5.3.1­

5.3.6 the bimodal density is graphed with the solutions corresponding to 

S103, 102, 10, 1, 10 " and 10-2 . Biased by the knowledge of the true 

underlying density we might accept the variance in the estimate with 

a - 0.1, but would otherwise probably choose a = 1.0 . Even with the fixed 

mesh and h = 0.2, the variance of the estimate corresponding to Y = 0.01 

is readily apparent. 

The kernel estimator with the quartic kernel given in Table 2.5.1 was 

applied to the same bimodal data for a sequence of values of the scaling 

factor h(N) . For a and h(N) too small the corresponding estimates 

have sharp peaks. As h(N) - 0 , the kernel estimate approximates the 

delta function solution; however, as a -. 0 , the discrete solution cannot 
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come arbitrarily close to the delta functions because the mesh interval is
 

a fixed, positive number. As h(N) - = , the kernel estimate approximates 

a diffuse uniform density that retains little semblance of the true sampling 

density; however, as a-e , the discrete solution looks like Diagram 5.3.1 

since the mesh interval and the support interval (t 2 ,tml) are fixed. 

Notice that the bimodal nature of the samples is apparent even for the over­

smoothed estimate (a = 10 ) Thus the choice of a mesh makes the discrete 

solution more robust than the kernel estimate with respect to the param­

eters a and h(N) 

The Interactive Mode
 

We recommend the following procedure for applying the penalized like­

lihood algorithm to a given sample x1,... ,xN . The range of the sample 

is examined and any outliers truncated if desired. A histogram is useful 

in this aspect. A good estimate of the penalty weighing factor a can be 

obtained with a coarse mesh as demonstrated in Diagrams 5.2.1-5.2.4. There­

fore, we choose a large value of the mesh interval h and try various 

values of y in powers of ten. Then we pick a as small as possible in 

accordance with our prior feelings about the variance of the resulting 

estimate. For initial guesses we use the histogram estimate or one­

hundredth, whichever is greater. For the lagrange multiplier we use -N/4. 

Once an acceptable a is found the mesh interval h is decreased until 

the fine structure is apparent. At this point a may be changed to fur­

ther smooth or unsmooth the estimate. 
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DIAGRAM 5.3.3 N = 300 Bimodal D.M.P.L.E. (y 10 
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D M.P.L.E, aDIAGRAM 5.3.4. N = 300 Bimodal 

CC 

C 

0 

C 

C z 

* 0 0 

S 4 

CgC 

-----------­-

-o ldl'iN~l l |lC~ll 

0 ..... 

....... . ... ..
 .. .. .. .. . .. .. .. .. . .......... 




95 

DIEAGRAM 5.3.5 N 300 Bimodal D.M.P.L.E. a = .0­
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DIAGRAM 5.3.7. N = 300 Bimodal Quartic Kernel h(N) 5.0 
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DIhGRAM 5.3.8. N =300 Bimodal Quartic Kernel h(N) 2.0
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h(N) = 0.8DIAGRAM 5.3.9. N = 300 Bimodal Quartic Kernel 
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DIAGRAM4 5.3.10. N =300 Bimodal Quartic Kernel h(N) 
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DIAGRAM 5.3.11. N 300 Bimodal Quartic Kernel h(N) = 0.4 
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DIAGRAM 5.3.12. N = 300 Bimodal Quartic Kernel h(N) = 0.2 
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5.4 Examples of Kernel and Discretized Estimates
 

To evaluate the various estimators,four densities were chosen as
 

benchmarks. They are:
 

1. the standard normal N(0,1) (5.4.1)
 

2. bimodal N(-1.5,l) + N(l.5,1)
 

3. student's distribution t5
 

4. the F10,10 density shifted by 3 units for convenience. 

The N(0,1) density was chosen for its universal importance in sampling. 

The bimodal density was chosen because it sometimes occurs in situations 

where the standard normal is assumed; for example, the density of IQ's for U.S. 

high school seniors is bimodal in nature. The t 5 density was chosen for 

its heavy tails. Finally the F 0)10 density was chosen because it is 

not symmetric and has a sharp peak. 

Monte Carlo simulations were performed on each of the densities in
 

(5.4.1) using the kernel estimator and the continuous piecewise linear
 

estimator. In Diagrams 5.4.1-5.4.7 we compare three estimates on each of
 

several random data sets. For each random sample the discretized solution
 

is given first (a). Then the recent non-I1 Fourier kernel (2.1.6) of
 

Davis [1975] is given (b). Finally, in (c) the quartic kernel (see
 

Table 2.5.1) gives estimates indistinguishable from the Gaussian kernel.
 

The optimal choices for the kernel scaling parameter were calculated using
 

(2.1.3) and 

h(N) = [l.5V/log1 N]
1 (5.4.2) 

for the Fourier kernel (see section 2.1). Formula (5.4.2) was used in
 

all cases to illustrate the practical difficulties in choosing h(N) for
 

an unknown density function. This formula is optimal for the standard
 

Even in this situation, the Fourier kernel introduces oscillations
normal. 
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and negative lobes in the tails of the estimate. For a random sample of
 

density, several estimates using the Davis
size 400 from the F10,10 


kernel for various choices of h(N) are given in Diagrams 5.4.7b-5.4.Yb'".
 

Yet with N = 400 the negative oscillations are always apparent particu­

larly on the left where there is no probability mass (which leads to a
 

good integrated mean square error). We remark that as a function of the
 

scaling parameter h(N) the Davis estimator behaves differently than the
 

usual Parzen estimator. In particular, for h(N) too large the resulting
 

estimates are oversmoothed; however, unlike other kernels, the Davis esti­

mate has large low frequency oscillations in the tails.
 

for the quartic kernel estimator was ob-
The optimal value of h(N) 


tained using formula (2.5.1); that is, for a general kernel K(-) satis­

fying (2.1.1) 

J K2 (x)dx 
h(N)5= N -!  (5.4.3) 

2 Kx21~)d32 Wf 1 (x)22 dx 

In Table 5.4.1 we give the quantities in (5.4.3) relating to the choice of
 

a kernel from Table 2.5.1.
 

TABLE 5.4.1
 

Kernel K2 (x)dx x2K(x)dj2
 

1/9
Box 1/2 


1/36
Triangle 	 2/3 


5/7 1/49
Quartic 

1
Gaussian 	 1/(2A) 


http:5.4.7b-5.4.Yb
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In Table 5.4.2 we give the quantity in (5.4.3) relating to the choice of
 

a sampling density from (5.4.1).
 

TABLE 5.4.2
 

Sampling Density J'f"(x)2dx 

N(o,1 3/ 
-2 2 5
 - 1.25e .(3/(ii))(1
Bimodal 


t5 143/(20i 5)
 

272160/7429
F10 ,1 0 
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DIARAM 5.4.1a. N 10 N(0,1) D.M.B*L.E. a!= 10 
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DIAGRAM 5.4.1b. N = 10 N(0,1) F.I.E. Kernel h(N) = 0.67 

4*z 

*0 

*0 C 

* . 

CC 

* * -

** 4 

zmaa 

Ge - : 

Iftd. 
0 

* * **** * * * * * * * * * * * * * * * * * * * * * 

z*0 -- C .0055O0000 009o0000000~0o 

3000Q 



108 

DIAGRAM 5.4.1c. N = 10 N(0,1) Quartic Kernel h(N) = 1.75 
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DIAGRAM 5.4.2a. N = 20 N(0,1) D.M.P.L.E. a = 10 
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DIAGRAM 5.4.2b. N = 20 N(0,1) F.I.E. Kernel h(N) = 0.58 
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DIAGRAM 5.4.3a. N = 100 N(0,1) D*M*P*L*E* ~ = 10 
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-0.47=100DIAGRAM 5.4.3b. N N(0,1) F.I.E. Kernel h(N) 
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DIAGRAM 5.4.3c. N = 100 N(0,1) Quartic Kernel h(N) = 1.11 
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DIAGRAM 5.4.4a. N =100 N(0,1) D.M.P.L.E*. 10 
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=0.47
nI.AGRAM 5.4.4b. N =100 N(0,1) F.I.E. Kernel h(N) 
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DIAGRAM 5.4.4c. N = 100 N(0,1) Quartic Kernel h(N) = 1.11 
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Bimodal D.M.P.L.E. = 10DIAGRAM 5.4,5a N = 25 
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DIAGRAM 5.4.5b. N 25 Bimodal F.I.E. Kernel h(N) 0.56
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DIAGRAM 5.4.5c. N= 25 Bimodal Quartic Kernel h(N)= 1.72 
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DIAGRAM 5.4.6a N Bimodal D.M.P.L.E. a10=100 
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=100 =0.47
DIAGRAM 5.4.6b. N Bimodal F.I.E. Kernel h(N) 
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DIAGRAM 5.4.6c. N =100 Bimodal Quartic Kernel h(N) -1.31 
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DIAGRAM 5.4.7a. N =400 Flj D *14 .. L.E; a 0.5 
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DIAGRAM 5.4.7b N = 400 F10.10 F.I.E. Kernel h(N) 0.41 
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DIAGRAM 5.4.7b', N = 400 F 10,10 F.I.E. Kernel h(N) = 0.25 
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DIAGRAM 5.4.7b". N = 400 F1 0.10 F.I.E. Kernel h(N) = 0.10 
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F.I.E. Kernel h(N) = 0.01DIAGRAM 5.4.7b"'. N = 400 F 10,1 0 
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=
DIAGRAM 5.4.7c. N 400 FI0 ,10  Quartic Kernel h(N) = 0.30 

. ** 

04 

0 

oooo ooo oooo ooo oooc o*
 

30Cll* 0l l | ll l t l! J l
 

4 *=. . . . . - . . . - - - - . + - -- - , - - - ± ­
=C 
 0 O 0 C 0 0 O0 C 0 O O 
 O O G 0 O*0 < l l l || l l l ~ l l |I l l l l l l ll 


i l @ I l l l l l l l
C'l l l l l l @ l ~ l 

@ l
~ ~ ~ 

0g ' . + + + . . + 
 + . i I I I + + + * + * * * + *
 

*' ' 4'' ' '
" ' 




130
 

5,5 Monte Carlo Simulation Study
 

Random samples were generated from the densities (5.4.1) and the con­

tinuous piecewise linear discretized,maximum penalized likelihood and kernel
 

estimators calculated. Three measures of error were considered for an esti­

mate I of f

0
 

1. integrated mean square error
 

I.M.S.E. = - fo(X)] fo(x)dx 	 (5.5.1) 

2. integrated square error
 

I.SE= [d(x) - fo(x)] dx 	 (5.5.2) 

3. maximum absolute difference
 

DERX 	= max I#(x) - fo(x)l (5.5.3) 
xE(--,a-) 

To evaluate (5.5.1)-(5.5.3) numerically, the values of and f were
 

calculated at the points -5.0, -4.9,..., 0,...,4.9, 5.0 at a spacing of
 

one-tenth. Simpson's rule was used to estimate (5.5.1) and (5.5.2).
 

DELMAX was taken to be the maximum difference over the 101 points.
 

Twenty-five random samples were generated for each case discussed
 

below for varying sample sizes. The quantities (5.5.1)-(5.5.3) were cal­

culated for each sample. The mean and standard deviation were then calcu­

lated for quantities (5.5.1)-(5.5.3) using the 25 simulation results. To
 

reduce computational time initial estimates in the maximum penalized like­

lihood algorithm were taken to be the true density values or one-hundredth,
 

Recall that an initial guess of zero in the numerical
whichever was larger. 


algorithm does not change in subsequent iterations. Typically about ten
 

iterations were required to satisfy the convergence criterion (5.1.9). A
 

of 0.25 was chosen to reduce computational
rather coarse mesh interval h 
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times except in two instances where h = 0.125 was used. The mesh used 

is denoted by 

mesh = (m, t1 , h) (5.5.4) 

where the estimate vanishes outside the interval (t2 )tm) For the 

kernel estimators, "hopt" denotes the theoretically best choice given by 

(2.1.3) or (5.4.2). The Fourier integral estimate (F.I.E.) corresponds 

to the kernel (2.1.6). The quartic kernel is given in Table 2.5.1. 

We remark that the quartic kernel exhibited smaller errors than did the 

Gaussian kernel. Using the Gaussian kernel increases computational time
 

by a large factor with no apparent gain. The smoothness and finite sup­

port of the quartic kernel (and other spline kernels) are therefore attrac­

tive features.
 

The following computational times ate typical for an IBM 370/155. 

For the discrete solution to generate and solve 25 samples from the four 

densities (5.4.1) with N = 25,100 and 400 and with three values of ! 

required 3439 seconds, about 3.82 seconds per sample for one value of ae 

For the Gaussian kernel estimate to generate and solve 25 samples from the 

four densities (5.4.1) with N = 25 and 100 for the optimal choice of h(N) 

required 665 seconds, about 3.33 seconds per sample. 
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TABLE 5.5.1. Twenty-five N(0,1) samples each,for N = 25, 100, 400, 800 
(error means with standard deviations in parentheses) 

D.M.P.L.E.* F.I.E. Quartic Gaussian 

N=25 e=O mesh-= Kernel Kernel Kernel 
Error (37,-4.5,.25) hopt = .56 hopt = 1,46 hopt = .56 

I.M.S.E. .0027 .0026 .0039 .0041 

(.0019) (.0021) (.0031) (.0032) 

I.S.E. .012 .014 .015 .016 

(.008) (.011) (.012) (.012) 

DEUAX .077 .079 .091 .095 
(.031) (.027) (.039) (.039) 

F.I.E. Quartic Gaussian
Df.M.P.L.E.* 

N=100 ai0 mesh= Kernel Kernel Kernel
 

Error (37,-4.5,.25) hopt = .47 hopt = 1.11 hopt = .42
 

I.M.S.E. 	 .00079 .00085 .00122 .00129
 
(.00054) (.00060) (.00074) (.00075)
 

.0048 .0050
I.S.E. 	 .0037 .0045 

(.0021) (.0026) (.0027) (.0027)
 

.047 .056 .059
DEUMAX .047 

(.013) (,012) (.018) (.018)
 

D.M.P.L.E.* F.I.E. Quartic
 

aO10 mesh= Kernel Kernel
N=400 

Error -(53,-3.25,.125) hopt = .41 hopt = .84
 

.00053
I.M.S.E. 	 .00033 .00027 


(.00018) (.00020) (.00022)
 

.0013 .0020
I.S.E. 	 .0014 

(.0008) (.0009) (.0009)
 

.025 .039
DEI4AX .031 
(.008) (.009) (.010) 

N=800 	 I.MS.E. IS.E. DELMAX
 

.026
D.M.P.L.E.* 	 .00022 .0009 
 .026
.0009
.00022
aM0 mesh= 
 (.006)
(.0005)
(.00013)
(53,-3.25,.125) 


= 25, 100, 400, 800 	respectively.
* 1,0,13,31 points were truncated for N 
25 were calculated with the mesh = (53,-3.25,.125).
Three samples for N 	= 


http:37,-4.5,.25
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TABLE 5.5.2. Twenty-five Bimodal samples each for n = 25, 100, 400
 
(error means with standard deviations in parentheses)
 

D.M.P.L.E Quartic Gaussian 
N-25 a=10 mesh- Kernel Kernel 
Error (41,-5,.25) hopt = 1.72 hopt = .66 

I.M.S.E. .00159 .00120 .00128 
(.00141) (.00104) (.00108) 

I.S.E. .012 .008 .009 
(.010) (.007) (.007) 

DELMAX .071 .061 .063 
(.030) (.022) (.023) 

D.M.P.L.E.* Quartic Gaussian
 
N-100 a=0 mesh= Kernel Kernel
 
Error (41,-5,.25) hopt = 1.31 hopt = .50
 

I.M.S.E. 	 .00054 .00049 .00052
 
(.00032) (.00031) (.00031)
 

I.S.E. .0040 	 .0034 .0036
 
(.0022) 	 (.0020) (.0020) 

DEIMAX .044 .040 .042 
(.014) (.013) (.014) 

N-400 	 I.M.S.E. ISE, DEIMAX 

D.M.P.L.E.* .00024 	 .0017 .030 
adi0 mesh .(.00012) (.0007) (.007)
 
(41,-5,.25)
 

* 0,3,4 points were truncated for N = 25, 100, 4.00 respectively. 

http:41,-5,.25
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TABLE 5.5.3. 	 Twenty-five t5 samples each for N = 25, 100, 400
 

(error means with standard deviations in parentheses)
 

Quartic 	 GaussianD.M.P.L.E.* 

Kernel 
 Kernel


N-25 a=lO mesh = 

Error (41,-5,.25) hopt = 1.07 hopt = .41
 

.00454 	 .00475
I.M.S.E. 	 .00282 

(.00148) (.00229) (.00233)
 

.0203 	 .0210
I.S.E. 	 .0147 


(.0073) (.0090) (.0091)
 

..123
.118
.090 

(.208) (.030)


DELMAX 

(.023) 


D.M.P.L.E.* Quartic Gaussian 

N=100 cr 10 mesh = Kernel Kernel 

Error (41,-5,.25) hopt = .81 hopt = .31 

I.M.S.E. .00084 .00150 .00157 

(.00062) (.00100) (.00104) 

.0066 	 .0069
I.S.E. 	 .0044 

(.0039)
(.0027) 	 (.0038) 


.072
.068
.048 

(.017) (0.23) (.026)
 

DELMAX 


I,S,E, 	 DELMAX
IMSE.
N=400 


.032
D.M.P.L.E.* .00032 .0016 


n=1 0 mesh= (.00020) (.0008) (.009)
 

(41,-5,.25)
 

* 1, 17, 59 points 	truncated for N 25, 100, 400 respectively. 

http:41,-5,.25
http:41,-5,.25


135 

TABLE 5.5.4 Twenty-five Fo1 0 Samples Each for N 
= 25, 100, 400
 

(error means with standard deviations in parentheses)
 

D.M.P.L.E.* Quartic Gaussian
 
N-25 al.5 mesh = Kernel Kernel
 

Error (35,-3.5,.25) hopt = .52 hopt ='.20
 

I.M.S.E. 	 .0321 .0140 .0146
 
(.0270) (.0104) (.0105)
 

.037
I.S.E. 	 .071 .036 

(.061) (.019) (.019)
 

.21 	 .21
DEMAX .30 

(.12) (.07) (.07)
 

D.M.P.L.E.* Quartic Gaussian 
c=.5 mesh = Kernel KernelN-100 


Error 	 (35,-3 .5,.25). hopt = .39 hopt = .15
 

I.M.S.E. 	 .0100 .0064 .0067
 

(.0071) (.0049) (.0051)
 

.016 	 .017
I.S.E. 	 .023 

(.014) (.009) 	 (.009)
 

.16
DELMAX .18 .15 

(.06) (.05) (.05)
 

N=400 	 I.MS.E. ISE, DEIMAX
 

.007 	 .11
D.M.P.L.E.* .0029 

(.02)
a = .5 mesh = 	 (.0017) (.003) 

(35,-3.5,.25)
 

* 2, 8, 21 points truncated for N = 25, 100, 400 respectively. 

http:35,-3.5,.25
http:35,-3.5,.25
http:35,-3.5,.25
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5.6 	The Penalty Weighing Factor a
 

= 

In this section we deal with two questions: first, whether c a(N)
 

and second, how ry is affected by scaling the random sample. The answer 

a depends only on the underlyingto the first question appears to be that 


N . Good and Gaskins [1972, p. 188]
density and not on the sample size 


In
give a heuristic proof that a is constant for the Normal density. 

Table 5.6.1 we present the integrated mean square error for a = 5, 10, 20 

for the Normal, bimodal, and t5 samples generated in the Monte Carlo study. 

were used. We base our conclusions
For the F10 ,10 samples a = , 1, 2 

on these data. Perhaps a slight increase in a as N increases is indi­

cated. However as is evident from Diagrams 5.3.1-5.3.6, dramatic changes 

in the estimates occur only for changes in magnitudes of a in powers of 

ten. This is due to the fact that the penalty term is competing against 

a . In a logarithmic term that is less sensitive to small changes in 

Table 5.6.2 we present a similar format for perturbing the optimal h(N) 

for the kernel estimator with a Gaussian kernel. 

A standard device is to transform the random sample xl,...,xN by 

i = ,N (5.6.1) 
xi b 

for some choice of a E R and b E R+ . Usually a is taken to be the 

sample mean and b the sample standard deviation. It is well known that 

and is not robust for densities with heavy tails.this choice of a b 


A more robust choice is
 

(5.6.2)a = x(.5) 

2.16
 

x(.86) -(.14)
 

sample quartile. The efficiency of (5.6.2)
where x(p) denotes the pth 
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TABLE 5.6.1. Average I.M.S.E. of the D.M.F.L.E for a Ferburbed 
by a Factor of Two. Divide a' by 10 for the F1 0, 1 0 
Samples. 

I.M.S.E. for 

Sample c = 5 a = 10 ce - 20 

N(0,l) N=25 .00242 .00267 .00427 

N(0,1) N-1O0 .00093 .00079 .00089 

N(0,1) N=400 .00037 .00033 .00035 

N(0,1) N=800 .00028 .00022 .00019 

Bimodal N=25 .00197 .00159 .00152 

Bimodal N-100 .00070 .00054 .00171 

Bimodal N=400 .00030 .00024 .00022 

t5 N=25 .00297 .00282 .00350 

t5 N1=00 .00092 .00084 .00101 

t5 N=400 .00039 .00032 .00030 

F10,10 N=25 .03208 .03865 .05519 

F10,10 N=100 .00996 .01390 .02411 

F10,10 N=400 .00292 .00450 .00740 
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TABLE 5.6.2. Average I.M.SE. of the Kernel Estimate for h(N)
 
Perturbed by a Factor of Two (Gaussian kernel)
 

I;MK;S.E. for 

Sample hopt hopt hopt 2 hopt 

N(0,1) N=25 .556 .00804 .00411 .00843 

N(0,1) w=100 .422 .00282 .00129 .00371 

Bimodal N=25 .657 .00379 .00128 .00152 

Bimodal N=100 .498 .00134 .00052 .00095 

t5 14=25 .406 .01067 .00475 .00416 

t5 N=100 .308 .00375 .00157 .00167 

F10 ,10 N=25 .198 .0334 .01456 .01999 

FI1,1 0 V=100 .150 .01428 .00673 .00926 
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is less than that of (5.6.1) for a Normal sample, but not for a Cauchy or 

contaminated density. 

If a transformation (5.6.1), a standard mesh t t...t , and a
I t2" m
 

reasonable choice for o' are used to solve for the continuous piecewise
 

linear solution p'(t') , then the original problem has the solution
 

tk = a4bt
 
k k 

(5.6.3)
 

p(t) = a) 

We ask whether p(t) may be solved directly (given a and b) for some
 

a.
 

Theorem 5.6.1. Suppose t'..,t' is a fixed mesh in problem (5.1.4) with 
1' m 

penalty weighing factor o' Let the transformation constants a and 

b be given. Then the solution (5.6.3) for p(t) may be solved directly 

by choosing a = b-5 Of' in problem (5.1.4) over the mesh tl,...,t m . 

Proof. The mesh spacing h = bh' . The integral constraint (5.1.5) is
 

satisfied if
 
I I-atk-a)
 

P(tk) ---)
 

Problems (5.1.4) are 

2
maximize E log p(xi) - CV3[2p(tk+l)] (5.6.4) 

and 

maximize r log p'(x!) - S[&p' (t 1 +l)] 2 (5.6.5) 

Using (5.6.3), problem (5.6.4) becomes 

Z 2E log 1 - 2 

or 
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3h , 3 b 2 'Ib [v't)]
log p'(x') - N log b - bVht I_2_k 

Since N log h is constant, we have that the choice -a' = b 5C -renders
 

problem (5.6.4) and (5.6.5) equivalent. This proves the theorem.
 

5.7 Extension to Higher Dimensions
 

For two-dimensional data the extension of the continuous piecewise
 

linear function ib the surface defined by triangles defined on a two-dimen­

sional mesh. This problem is more difficult to solve. Another approach
 

is the pseudo-independence algorithm of Bennett [1974]. After a linear
 

transformation the problem of finding a p-dimensional density is reduced 

to that of finding p one-dimensional densities. Let x be a p x 1
 

data vector. Let R be a p x p matrix and x a p x I vector. Then 

the pseudo-independent estimate is
 

p 
)= It (z ) (5.7.1)

i=1
 

where
 

z (ZVz 2 ,...,Zp)t 

= R - x) (5.7,2) 

and fl are p one-dimensional density estimates. Suppose x is the
 

sample mean of the p-dimensional data and Z is the positive definite
 

sample covariance matrix. Let A denote the p x p diagonal matrix of 

the eigenvalues of r and E denote the corresponding p x p matrix of 

normalized eigenvectors. If we take 

R = AkET (5.7.3) 

then the transformed (5.7.1) data has mean zero and covariance matrix equal
 

to the identity matrix. Only for Gaussian data does the product (5.7.1)
 

have a theoretical justification. The pseudo-independence algorithm uses
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(5.7.1) for arbitrarily distributed data.
 

For p = 2 the histogram and pseudo-independent discrete estimate
 

with mesh interval 0.2 and a = 1.0 are graphed for two data sets in
 

Diagrams 5.7.1-5.7.4. The data are a measure of the intensity of light
 

(reflected by the earth and recorded by satellite) in two spectral bands.
 

The first band is from 0.40-0.44 pm and the second band is from 0.72-0.80 pm. 

The first data set is 225 pairs of measurements for light reflected from a 

soybean field. The second data set is 156 measurements on a corn field.
 

For each data set a histogram is given to locate the random samples followed
 

by the corresponding pseudo-independent discrete solution. Increasing
 

values of the estimated two-dimensional density are denoted by the following
 

ten symbols on a linear scale:
 

(smallest) 0 . , - / + ; * B $ (largest) 

The parameters of the pseudo-independence algorithm are: 

Data Set I
 

_(82.45\ 
 (17.63 
 1.056 .998)

2.03/ .998 -.056/
9 	 0 


Data Set II
 

(85.48 	 (26.28 .323 *946
 

\03.11/ 0~ 5.79/ - .946 .323)
 

http:0.72-0.80
http:0.40-0.44
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Dy-&GRAM 5.7. 1. Histogram of 225 Soybean Data 

x-range : 77.2 to 39.2 (by 1.2 6 columns) 

y-range : 77.9 to 10k.5 -(by 1.4 3 rows) 
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DIAGRAM 5.7.2. Pseudo-Independent Discrete Estimate of
 
225 Soybean Data ce = I 

x-range : 77.2 - 89.2 (by 0.2 1 column)
 

y-range : 77.9 - 104.5 (by 7/15 1 row)
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DIAGRAM 5.7.3. Histogram of 156 Corn Data 

x-range : 76.75 - 94.75 (by 1.5 5 columns) 

y-range : 86.45 - 118.75 (by 1.7 3 columns) 
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DIAGRAM 5.7.4. Pseudo-Independent Discrete Estimate of
 
156 Corn Data oe= 1
 

x-range : 76.75 - 94.75 (by 0.3 = 1 column)
 

y-range : 86 .45 - 118.75 (by 17/30 = I rcFq)
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5.8 Conclusions
 

In this study, two nonparametric probability density estimation al­

gorithms have been examined. The kernel estimators of Rosenblatt [19561
 

and Parzen [1962) are considered inChapter II. The consistency properties
 

of the kernel estimators are well known. The Fourier integral kernel of
 

Davis [1975] is the most recent entry in this class of estimators; however,
 

the resulting estimate is not nonnegative. Whittle's [1958] classical work
 

attempts to find an optimal kernel to minimize the expected mean square
 

error given prior information about the true density. A practical example
 

that Whittle presents is corrected. The Whittle estimator is shown to be
 

a Parzen kernel estimator when no prior information is available.
 

A difficulty with the kernel estimators is the choice of the kernel
 

scaling parameter h(N) An asymptotically optimal expression for h(N)
 

is known; however, a function of the true sampling density is required.
 

h(N) using
In section 2.5 an interactive mode is described for choosing 


only the random sample and the investigator's prior feelings about the
 

The interactive mode is extended
smoothness of the true sampling density. 


basedto a proposed quasi-optimal algorithm for automatically picking h(N) 

In a Monte Carlo simulation study, the quasi-optimal
solely on the data. 


was obtained for randomly generated data sets. The
estimate of h(N) 


integrated mean square error of the kernel estimate was calculated using
 

the quasi-optimal and the theoretically optimal ehoices for h(N) . The 

efficiency of the quasi-optimal h(N) was about 66%; however, the effi­

ciency of the asymptotically 6ptimal h(N) scaled by a factor of two was
 

less than 50%. Thus the quasi-optimal estimate performs well in light of
 

h(N) The obvious
the sensitivity of the kernel estimate to changes in 


be an
extension of the quasi-optimal algorithm to higher dimensions would 
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interesting exercise.
 

The second nonparametric probability density estimate is based on the
 

maximum likelihood criterion. The histogram is shown to be the maximum
 

likelihood estimator in the class of simple functions. In a more general
 

class of functions, the maximum likelihood estimate may not exist; there­

fore, penalty function techniques are introduced in a natural way in a func­

tion space setting. In Chapter III, a theoretical basis is established
 

for this class of estimators. Much of this material was motivated by a
 

paper of de Montricher, Tapia, and Thompson [1975]. The maximum penalized
 

likelihood estimate solves an infinite-dimensional problem and appears non­

tractable in general. Thus in Chapter IV a discrete version of the infinite­

dimensional problem is introduced. The discretized maximum penalized like­

lihood estimator is shown to be a consistent in the mean square error. For
 

a fixed sample the discrete solution approximates the infinite-dimensional
 

solution as the mesh spacing approaches zero. Thus the discretized maxi­

mum penalized likelihood estimate is more robust in the choice of a mesh
 

spacing than the histogram or the kernel estimate (with respect to the
 

kernel scaling factor). Numerical studies have indicated that the D.M.P.L.E.
 

does not change noticeably for h smaller than some positive threshold
 

value. Consequently, we hypothesize the consistency requirement that the
 

mesh spacing approach zero slowly as the sample size increases is an arti­

fact of our proof. In other words, the mesh spacing may be picked arbi­

trarily small independently of the sample size. It should then be a direct
 

result that the infinite-dimensional solution is also consistent. Open
 

problems at this time include the rate of convergence of the discrete solu­

tion, the approximation properties of the discrete solution, and the proof
 

of consistency for the original infinite-dimensional solution.
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The humerical properties of the discrete solution are presented in 

Chapter V. Newtonts method is employed to solve for the discrete estimate.
 

An interactive mode is described for obtaining estimates given a random 

sample based on the investigator's prior feelings of the smoothness of the
 

true sampling density. The robustness of the discrete estimator is demon­

strated vis-a-vis the kernel estimator with respect to the choice of mesh,
 

penalty weighing, and kernel scaling parameters. An extensive collection
 

of graphs illustrates each of the ideas discussed. A Monte Carlo simula­

tion study is summarized and a direct comparison made between the discrete
 

and kernel estimators, The extension to density estimation in several dimen­

sions is demonstrated by an example in two dimensions using data from NASA's
 

Earth Resources project.
 

One important application for the discrete maximum penalized likelihood
 

estimate is in the field of pattern recognition. The discrete maximum
 

penalized likelihood estimator has advantages compared with the kernel esti­

mator. The discrete solution does not involve the data for evaluation. In
 

fact, the evaluation of the discrete estimate is as straightforward as a
 

table lookup. On the other hand, the kernel estimator requires the data
 

for evaluation, and the time required for evaluation increases with the
 

sample size. Both the discrete and kernel estimates are superior to the
 

Gaussian assumption for classification. The use of the Gaussian classifier
 

requires as a preprocessing step the reduction of a class of training data
 

into several subclasses of approximately Gaussian data,
 

The computational efficiency of the algorithm for calculating the dis­

crete maximum penalized likelihood estimate can undoubtedly be improved.
 

This efficiency is important when estimating multi-dimensional densities.
 

The use of the pseudo-independence algorithm has appeared reasonably robust
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against the multimodal possibilities encountered in remote sensing data.
 

However, it is clear that this ad hoc projection of a p-dimensional density
 

into p one-dimensional densities where the D.M.P.L.E. may be used will
 

not be generally satisfactory. Thus it is clear that work needs to be
 

carried out for generalizing the D.M.P.L.E. to the p-dimensional problem.
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